

Revised Executive Summary

July 2004
SourcePoint

401 B Street, Suite 800
San Diego, CA 92101
(619) 699-1900

ABSTRACT

In 1994, the U.S. Department of Transportation (DOT) and Mexico's Secretariat of Communications and Transportation (Secretaría de Comunicaciones y Transportes (SCT)) signed a Memorandum of Understanding (MOU) outlining the creation of the Joint Working Committee (JWC). Through the MOU, the JWC was charged with "analyzing, developing, and coordinating border transportation plans and programs reflecting the needs of both countries." JWC consists of representatives from the four U.S. states and the six Mexican states along the international border and representatives from selected federal agencies from both the U.S. and Mexican governments, including the Federal Highway Administration (FHWA) of the U.S. DOT, Mexico's SCT, the U.S. Department of State and Mexico's Secretariat of Foreign Relations (Secretaría de Relaciones Exteriores). In 1998, the JWC completed the Binational Border Transportation Planning \& Programming Study (P\&P Study). The P\&P Study produced an inventory of transportation infrastructure along the U.S.-Mexico border and specified some of the "disconnects" that existed at that time.

The Binational Border Transportation Infrastructure Needs Assessment Study (BINS) follows the JWC's vision of developing and coordinating border transportation plans, and continues the work initiated in the P\&P study. The purpose of BINS is to identify major transportation corridors in the border region, to develop a quantitative procedure to evaluate the needs of these corridors, and then, with input from the JWC, to identify transportation projects to meet the needs of the corridors as well as to identify possible funding sources. The BINS project was conducted in close coordination with the BINS Technical Committee, which is comprised of representatives from the ten border states as well as SCT and FHWA, under the guidance of the JWC.

HIGHLIGHTS OF THE BINS PROJECT:

- Developed a systematic approach for assessing transportation infrastructure needs in the U.S.-Mexico border region. This framework will be useful for future transportation infrastructure assessments and can be enhanced or adapted to reflect the JWC's evolving areas of emphasis.
- Identified 42 multimodal transportation corridors within the ten border states.
- Created a border-wide database and evaluation tool, that was used to help prioritize each state's transportation corridors, based on multimodal quantifiable criteria for highways, land ports of entry, airports, maritime ports, and railroads.
- Identified 311 significant transportation projects (258 in the U.S. and 53 in Mexico). The purpose of compiling transportation project-level information was to summarize funded and unfunded planned infrastructure improvements for the border region.
- Identified in the U.S., a shortfall of approximately $\$ 10.6$ billion dollars (in 2003 constant dollars) for transportation projects, corresponding mainly to highway projects (\$10.5 billion dollars).
- Identified in Mexico, a shortfall for transportation projects of $\$ 9,030$ million pesos (in constant 2003 pesos) [or $\$ 860$ million dollars], which also corresponds mainly to highway projects ($\$ 8,878$ million pesos) [or $\$ 846$ million dollars]. Mexican Pesos were converted to US dollars at 1 US $\$=10.5$ Mexican pesos.
- The section titled Summary of Findings by State illustrates the corridors (organized by priority), provides an example of transportation projects, and identifies funding shortfalls, for each of the ten border states.
- Future work of BINS could improve the process of corridor and project identification, such as establishing binational and multistate transportation corridors. Incorporating a broader set of criteria, such as security, environment, and safety elements, could enhance the corridor evaluation process. The integration of the binational geographical information system (BGIS) database with BINS would enhance the display and analysis of transportation corridors and projects.

TABLE OF CONTENTS

INTRODUCTION 3
BACKGROUND 4
STUDY PURPOSE AND OBJECTIVES 5
ORGANIZATION OF THE REPORT 6
GENERAL CONCLUSIONS 6
SUMMARY OF FINDINGS BY STATE 8
Arizona 9
Baja California 10
California 11
Chihuahua 12
Coahuila 13
New Mexico 14
Nuevo León 15
Sonora 16
Tamaulipas 17
Texas 18
BORDER TRANSPORTATION INFRASTRUCTURE NEEDS ASSESSMENT 19
Background 19
U.S.-Mexico: Key Economic Partnership 19
U.S.-Mexico Trade: Expected to Continue to Grow 20
U.S.-MEXICO: STRATEGIC TRANSPORTATION CORRIDORS 24
Background 24
Identification of Major Transportation Corridors in the Border Region 24
Corridor Evaluation Process 26
Corridor Evaluation Tool 27
U.S.-MEXICO: PLANNED TRANSPORTATION PROJECTS ON BORDER CORRIDORS 28
Overview of Transportation Projects in the Border Region 29
United States 30
Mexico. 32
Data Issues 33
Projects in the Ports of Entry 33
FINANCING OPTIONS FOR BORDER TRANSPORTATION INFRASTRUCTURE 34
Traditional Financing Sources in the United States 34
Traditional Financing Sources in Mexico 35
Border and Corridor Grant Opportunities 35
Innovative Financing. 37

EXECUTIVE SUMMARY

EXECUTIVE SUMMARY

INTRODUCTION

Trade between the United States (U.S.) and Mexico has soared over the past decade. With the signing of the North American Free Trade Agreement (NAFTA) in 1994, the value of trade from 1995-2000 has increased by 17 percent per year. Currently, Mexico is the second largest trading partner of the U.S., behind only Canada. In 2002, trade between the U.S. and Mexico totaled $\$ 232$ billion dollars.'

This explosion of trade between the U.S. and Mexico predominantly moves across the border on trucks, with a smaller portion of goods exchanged by rail, water and air. Two-way truck trade alone more than doubled from about $\$ 77$ billion dollars in 1994 to about $\$ 170$ billion dollars in 2000. In 2002, nearly 70 percent of merchandise trade between the U.S. and Mexico was transported by trucks. ${ }^{2}$

While NAFTA has brought economic benefit to the border region as well as to each country, it has also provided infrastructure-related challenges. For both countries to continue to benefit in future years from the shared border, the transportation infrastructure that links the two countries needs to be maintained and expanded to handle future cross-border travel demand. Current transportation infrastructure was not designed to handle the large NAFTA traffic volumes. ${ }^{3}$ As a result, the local transportation system is increasingly used by international trade related traffic destined for the interior of the United States or Mexico, compounding existing demands for additional transportation infrastructure from the rise in local traffic. In the U.S., state Departments of Transportation (DOTs) have been mainly responsible for improving the local transportation infrastructure, which provided benefits to the national economy as it serves international goods movement.

The U.S. and Mexico share a 1,278 -mile (2,056 kilometers -km) border that extends from the Pacific Ocean on the west coast to the Gulf of Mexico on the southeast coast. A border region of 100 km on either side of the border is shown in Map 1 on the following page. The 100 km , ten-state "Border Region" is the focus of this study. The four U.S. border states are California, Arizona, New Mexico and Texas. The six Mexican border states are Baja California, Sonora, Chihuahua, Coahuila, Nuevo León, and Tamaulipas.

[^0]
Map 1 - Study Area
 U.S.-Mexico: 100 km Border Region

Source: BINS Technical Committee

BACKGROUND

In April 1994, the U.S. Department of Transportation (DOT) and Mexico's Secretariat of Communications and Transportation (Secretaría de Comunicaciones y Transportes (SCT)) signed a Memorandum of Understanding (MOU) outlining the creation of the Joint Working Committee (JWC). Through the MOU, the JWC was charged with "analyzing, developing, and coordinating border transportation plans and programs reflecting the needs of both countries." The MOU also envisioned enhanced communications, coordination, advice, and consensus building among government entities on both sides of the border. The JWC consists of transportation and planning agency representatives from the four U.S. states and the six Mexican states along the international border and representatives from selected federal agencies from both the U.S. and Mexican governments, including the U.S. Department of State (DOS) and Mexico's Secretariat of Foreign Relations (Secretaría de Relaciones Exteriores (SRE)).

In Mexico, the 1995-2000 National Development Plan (Plan Nacional de Desarrollo (PND)) called for the modernization of the federal highways of national importance, which provide a link among state capitals and main maritime and border ports. The 2001-2006 PND continues these efforts with the objective of achieving a transportation infrastructure network that will facilitate Mexico's participation in the globalization process. In addition to investments in highway improvements, railroads, airports and seaports have benefited from both public and private investments. ${ }^{4}$

In the U.S., the Transportation Equity Act for the $21^{\text {st }}$ Century (TEA-21), which became law in 1998, provided some dedicated resources to address additional transportation facilities identified in the

[^1]National Corridor Planning and Development (NCPD) Program and the Corridor Border Infrastructure (CBI) Program. However, the transportation needs have exceeded the funding capacity of these two programs. The sections authorizing these programs ended with the termination of TEA-21 at the end of the 2003 federal fiscal year.

In 1998, the JWC authorized the Binational Border Transportation Planning \& Programming Study ${ }^{5}$ or P\&P Study. The P\&P Study produced an inventory of transportation infrastructure along the U.S.Mexico border and specified some of the "disconnects" that existed in 1998. However, the P\&P Study stopped short of identifying major transportation corridors and assessing their needs.

The JWC recognized that the TEA-21 programs did not provide sufficient funding to satisfy the rapidly expanding border area transportation needs and, with the reauthorization of TEA-21 close at hand, that additional information was required to carry out a transportation corridor analysis and needs assessment for the U.S.-Mexico border region. Initially, the JWC anticipated that the findings from this study would be used during the TEA-21 reauthorization process, and thus authorized the Binational Border Transportation Infrastructure Needs Assessment Study (BINS). As explained in more detail in this Executive Summary, BINS has evolved as a tool to identify and evaluate major transportation corridors and compiled a list of planned transportation projects, based on each state's needs.

STUDY PURPOSE AND OBJECTIVES

The BINS project follows the JWC's vision of developing and coordinating border transportation plans, and continues the work initiated in the P\&P study. The purpose of BINS is to identify major transportation corridors on the border region, to develop a quantitative procedure to evaluate the needs of these corridors, and then, with input from the JWC, to identify transportation projects to meet the needs of the corridors as well as to identify possible funding sources.

Specifically, the BINS project has five key objectives:

1. To develop a set of minimum criteria to be used by the JWC to identify major multi-modal transportation corridors.
2. To develop an evaluation process, accepted by the JWC, to analyze major transportation corridors identified in Objective No. 1.
3. To create a border-wide database and evaluation tool to prioritize each state's transportation corridors based on the methodology and process identified in Objective No. 2, which can be used for future assessments.
4. To compile a list of significant transportation projects on the corridors, including each project's description, estimated cost, and anticipated completion date, and to summarize each state funding needs, as well as those for the U.S.-Mexico border, to implement these transportation projects.

[^2]5. To investigate traditional and innovative methods to fund border transportation infrastructure needs.

ORGANIZATION OF THE REPORT

The BINS project is documented in three reports that provide increasing levels of detail. First, the Executive Summary highlights the major findings related to border transportation infrastructure needs, strategic transportation corridors and planned projects as well as potential financing options. Second, the BINS report describes the process, methodology and tools developed to evaluate transportation infrastructure needs along the border region and it also presents the results of the analyses in more detail. Finally, the Appendices include the raw data used as input for the various analyses as well as documentation of the study process.

GENERAL CONCLUSIONS

The BINS project completed five main objectives which followed the overall purpose of assessing the transportation infrastructure needs of the U.S.-Mexico border region. It was conducted in close coordination with the BINS Technical Committee, which is comprised of representatives from the ten border states as well as SCT and Federal Highway Administration (FHWA), under the guidance of the JWC.

First, multimodal border transportation corridors were identified. Then, an evaluation process and tool, as well as a borderwide database, were developed to analyze and prioritize those corridors within each border state. Next, transportation projects were identified on each of the selected corridors. Finally, traditional and innovative financing methods for transportation projects were investigated. This work was conducted with ongoing participation from the BINS Technical Committee.

The BINS project provides a systematic approach for assessing transportation infrastructure needs in the U.S.-Mexico border region. Findings from this project will assist transportation officials on both sides of the border to establish planning and programming strategies to achieve common goals for key multi-modal transportation corridors. The framework developed by the BINS project also will be useful for future transportation infrastructure assessments and can be enhanced or adapted to reflect the JWC's evolving areas of emphasis. A summary of findings for each border state is provided in the following section.

In brief, the BINS project identified 42 multimodal transportation corridors within the ten border states, which were selected by the individual state representatives of the BINS Technical Committee based on the needs identified by each state. A border-wide database and evaluation tool, that was used to help prioritize each state's transportation corridors, was created based on multimodal quantifiable criteria for highways, land ports of entry, airports, maritime ports, and railroads.

Also, the BINS project resulted in a list of significant transportation projects on the corridors provided by the BINS Technical Committee according to the needs identified by each state. The purpose of compiling transportation project-level information was both to summarize planned infrastructure improvements for the border region and the unfunded needs identified by the states.

Texas' long-term projects were not included. Arizona submitted projects beyond 2003; however, the expected implementation timeline was not provided.

In the U.S., a shortfall of approximately $\$ 10.6$ billion dollars (in 2003 constant dollars) for transportation projects was identified and it is mostly related to highway projects ($\$ 10.5$ billion dollars). Anticipated costs for long-term projects were not submitted by Texas and Arizona. New Mexico submitted cost estimates for long-term highway projects only.

In Mexico, the identified shortfall for transportation projects amounts to $\$ 9,030$ million pesos (in constant 2003 pesos) and it also corresponds mainly to highway projects ($\$ 8,878$ million pesos). Future allocation of funding for planned projects should be based on priorities developed through further analyses.

The section titled Summary of Findings by State illustrates the corridors (organized by priority), provides an example of transportation projects, and identifies funding shortfalls, for each of the ten border states.

As noted earlier, the BINS methodology followed a multimodal approach for gathering quantitative data for highway, rail, maritime, airport, port of entry, and intermodal facilities. The evaluation tool relies on this database to prioritize transportation corridors within each border state. The limitations of the evaluation tool derive from the lack of availability of current or projected traffic and trade data for the corridors identified. Several border states were unable to provide complete datasets. Another data limitation encountered was related to information on planned transportation projects. The data provided by the states varied widely in terms of the planning horizon, project description, cost estimates, and project funding availability. For example, some states provided no data on planned long-term projects, anticipated project cost or funding levels. Project descriptions were many times incomplete.

The future enhancement of the transportation infrastructure network along the border region will greatly depend on continuous cooperation and coordination efforts in binational planning. The BINS project has continued to strengthen the foundation of a binational perspective for the improvement of transportation infrastructure, which was started through the P\&P study. However, BINS stopped short of looking at the connection between the transportation corridors identified in the U.S. and Mexico or between adjoining states in either country. The remainder of this section identifies recommended enhancements for a potential second phase of the BINS project.

A second phase of BINS could accomplish improvements in the process of corridor and project identification of binational and multistate transportation corridors. The concept of establishing binational corridors would capture the synergy of crossborder trade and travel more fully. It would allow the prioritization of corridors and projects under a new light by providing a better understanding of the mutual economic benefits for both countries. Also, it would point to the positive results of coordinated binational planning and, at the same time, would provide a signal when that coordination is not present. For example, establishing binational corridors and identifying key transportation projects would show whether both countries are planning to implement improvements on transportation facilities or POEs on a similar schedule.

In addition, a second phase of BINS could enhance the corridor evaluation process by incorporating a broader set of criteria. Issues such as security, environment, and safety should be considered as additional elements. Current criteria could be reviewed to determine whether minimum or
maximum thresholds should be established, such as minimum levels of daily traffic on a facility, among others.

Although a binational geographical information system (GIS) database was not available during the development of the BINS project, a second phase of BINS could incorporate its capabilities. Such a system could facilitate the process of corridor data administration and, most importantly, it could assist in locating and analyzing transportation projects on the identified corridors. A binational GIS database could also assist in the production of maps, which are important visual tools for transportation studies and decision making.

Finally, it is recommended that the evaluation of U.S.-Mexico border transportation corridors be updated regularly, building upon the BINS project.

SUMMARY OF FINDINGS BY STATE

Arizona

The BINS Technical Committee representative identified one corridor in Arizona, the CANAMEX Corridor. A map of the Arizona border region and its corridor within 100 km is presented below.

The BINS Technical Committee representative identified 21 transportation projects in Arizona's CANAMEX Corridor through 2020 and all of them are highway projects on I -19. They include reconstruction of an interchange at Valencia and bridge rehabilitation. Of the 21 projects, 13 are considered fully funded, with an estimated cost of $\$ 38.8$ million dollars (constant 2003 dollars). ${ }^{6}$

Eight of the projects are not fully funded and no cost estimates were provided for them. Funding for these projects represents an unmet need related to border transportation infrastructure in Arizona. However, since no cost estimates were provided for these eight projects, it is not possible to quantify that need.

[^3]
Baja California

The BINS Technical Committee representative identified 12 corridors in Baja California and named most of them after road junctions. A map of the Baja California border region and its corridors, which are organized by priority, is presented below.

The BINS Technical Committee representative identified 17 transportation projects in Baja California's corridors through 2020 and all of them are highway projects. They include the TijuanaRosarito 2000 highway, the Ejido Cuernavaca-La Rosita project in Mexicali, and improvements to the Tecate-Mexicali free highway. Of the 17 projects, which total approximately $\$ 4,164$ million pesos (constant 2003 pesos), 14 are considered fully funded with an estimated cost of $\$ 464$ million pesos.

Three highway projects are considered not fully funded and are estimated to cost $\$ 3,700$ million pesos. Therefore, this amount represents an outstanding funding need related to Baja California's border transportation infrastructure.

California

The BINS Technical Committee representative identified two corridors in California, the San Diego-Tijuana-Tecate and the Imperial-Mexicali Corridors. A map of the California border region and its corridors, which are organized by priority, is presented below.

The BINS Technical Committee representative identified 110 transportation projects in California's two corridors through 2030. They include the construction of State Route (SR) 905, improvements to I-5 and I-805, construction of Brawley Bypass expressway, and upgrades to SR 111. Of the 110 projects, 103 are highway projects and seven are railroad projects. Twenty-six projects are considered fully funded and 84 projects are not fully funded.

Of the 103 highway projects, which total approximately $\$ 12.9$ billion dollars (constant 2003 dollars), 22 projects are considered fully funded and have an estimated cost of approximately $\$ 2.6$ billion dollars The remaining 81 highway projects are considered not fully funded and are estimated to cost $\$ 10.3$ billion dollars.

Of the seven railroad projects, which total approximately $\$ 923$ million dollars (constant 2003 dollars), four projects are considered fully funded at an estimated cost of approximately $\$ 811$ million dollars while three projects are considered not fully funded and are anticipated to cost $\$ 112$ million dollars.

Therefore, California has identified a need of $\$ 10.3$ billion dollars to fully fund identified highway projects and $\$ 112$ million dollars to implement rail projects in the state's border transportation system.

Chihuahua

The BINS Technical Committee representative identified six corridors in Chihuahua, which are México-Ciudad Juárez, Ojinaga-Chihuahua, Ciudad Juárez-Tijuana, El Berrendo-Janos-SuecoChihuahua, Guadalupe-Samalayuca-Chihuahua and Jerónimo-Samalayuca-Chihuahua Corridors. A map of the Chihuahua border region and its corridors, which are organized by priority, is presented below.

The BINS Technical Committee representative identified four transportation projects in Chihuahua's corridors through 2020 and all of them are highway projects. They include the new Zaragoza-Dr. Porfirio Parra highway, upgrades to the La Mula-Ojinaga highway, and other road rehabilitations. The four highway projects, which are not fully funded, total approximately $\$ 503$ million pesos (constant 2003 pesos). Therefore, this amount represents the funding needs identified for Chihuahua's border transportation infrastructure.

Coahuila

The BINS Technical Committee representative identified four corridors in Coahuila, which are the Piedras Negras-Ciudad (Cd) Acuña Corridor, the Morelos-Cd. Acuña Corridor, the Sabinas-Piedras Negras Corridor and the Boquillas del Carmen a Múzquiz Corridor. A map of the Coahuila border region and its corridors, which are organized by priority, is presented below. Because no facilities were identified for the planned Boquillas del Carmen a Múzquiz Corridor, it is not shown on the map.

The BINS Technical Committee representative identified ten transportation projects in Coahuila's corridors through 2020. Nine of them are highway projects and one of them is an airport project. They include construction of the El Melón-La Linda highway, improvements to the Zaragoza-Ciudad Acuña highway, and runway improvements at the International Airport in Acuña. Of the ten projects, two are considered fully funded, and eight are considered not fully funded.

Of the nine highway projects, which total approximately $\$ 1,363$ million pesos (constant 2003 pesos), two projects are considered fully funded at an estimated cost of $\$ 307$ million pesos. Seven highway projects are considered not fully funded and are anticipated to cost approximately $\$ 1,056$ million pesos. The airport project, which is not fully funded, has an estimated cost of $\$ 62$ million pesos (constant 2003 pesos).

Therefore, Coahuila has identified a need of $\$ 1,056$ million pesos to fully fund identified highway projects and $\$ 62$ million pesos to implement an airport project in the state's border transportation system.

New Mexico

The BINS Technical Committee representative identified three corridors in New Mexico, which are the I-10, the North-South, and the Midwest Corridors. A map of the New Mexico border region and its corridors, which are organized by priority, is presented below.

The BINS Technical Committee representative identified ten transportation projects in New Mexico's corridors through 2020. They include highway widenings, the extension of Sunland Park Drive, construction of a new intermodal center, railroad crossing at Santa Teresa, and extension of the Doña Ana County airport runway. Five of those projects are highway projects, three are airport projects and two are rail related. Of the ten projects, three are considered fully funded and seven are considered not fully funded.

Of the five highway projects, three are considered fully funded and have an estimated cost of \$57 million dollars (constant 2003 dollars). The remaining two highway projects are considered not fully funded. No cost estimates were provided for one of these projects. The other project, the Sunland Park Drive Extension, is projected to cost $\$ 13$ million dollars. Funds for Phase 1 have been programmed for a total of $\$ 5$ million dollars. The remaining funds for Phase 2 of the Sunland Park Drive Extension have not been identified. Therefore, the unmet funding need identified for New Mexico's border highway infrastructure is $\$ 8$ million dollars.

Since no cost estimates were provided for any of the airport or rail related projects, the unmet funding need for those infrastructure projects could not be quantified.

Nuevo León

The BINS Technical Committee representative identified one corridor in Nuevo León, the MonterreyColombia Corridor. A map of the Nuevo León border region and its corridor within the 100 km limit is presented below.

The BINS Technical Committee representative identified one transportation project in Nuevo León's corridor through 2020. This project involves highway improvements to NL-01 between Ciudad Lampazos and the Colombia POE. It is not fully funded and is estimated to cost approximately \$656 million pesos. Therefore, this amount represents the funding needs identified for Nuevo León's border transportation infrastructure.

Sonora

The BINS Technical Committee representative did not identify any transportation corridors in Sonora. The SCT identified one corridor in this state and titled it the Sonora Corridor. A map of the Sonora border region and its corridor within the 100 km limit is presented below.

The BINS Technical Committee representative identified four transportation projects through 2020 in the Sonora Corridor. They include improvements to the MX-2 highway, such as modernization of the San Luis Río Colorado southern access, upgrades at Paso por Agua Prieta, and improvements at Imuris-Cananea and Pitiquito-Caborca. All of them are highway projects and are considered fully funded. The total estimated cost is approximately $\$ 106.3$ million pesos (constant 2003 pesos).

Even though these four highway projects are categorized as fully funded, the BINS Technical Committee representative indicated that the source of the funding is the federal government, and an unknown portion of the total funding still needs to be provided to the state.

Tamaulipas

The BINS Technical Committee representative identified six corridors in Tamaulipas. They are the Reynosa Corridor, Matamoros Corridor, Miguel Alemán Corridor, Nuevo Laredo Corridor, Nuevo Progreso Corridor, and Camargo Corridor. A map of the Tamaulipas border region and its corridors, which are organized by priority, is presented below.

The BINS Technical Committee representative identified 17 transportation projects in Tamaulipas' corridors through 2020, of which 16 are highway projects and one is a rail project. They include improvements to the Nuevo Laredo-Reynosa highway and the Tejón-Reynosa roadway, and improvements to the railroad bridge at Matamoros. Of the 17 projects, 5 are fully funded, and 12 are not fully funded.

The 16 highway projects are estimated to cost $\$ 3,829$ million pesos (constant 2003 pesos). Five of those projects are considered fully funded and are anticipated to cost approximately $\$ 866$ million pesos. The remaining 11 highway projects are considered not fully funded at an estimated cost of approximately $\$ 2,963$ million pesos.

The one rail project, which is considered not fully funded, is estimated to cost $\$ 90$ million pesos (constant 2003 pesos).

Therefore, Tamaulipas has identified a need of $\$ 2,963$ million pesos to fully fund identified highway projects and $\$ 90$ million pesos to implement a rail project in the state's border transportation system.

Texas

The BINS Technical Committee representative identified six corridors in Texas: the Interstate Highway (IH) 10 Corridor, the IH-35 Corridor, the IH-69 Corridor, the U.S. 83 Corridor, the La Entrada al Pacifico Corridor and the Ports to Plains Corridor. A map of the Texas border region and its corridors, which are organized by priority, is shown below.

The BINS Technical Committee representative identified 117 transportation projects in Texas' corridors through 2005. They include improvements to I-H 10, I-H 35, U.S. 77, modernization of the Del Rio International Airport, and the rehabilitation of the Presidio POE rail crossing. Of the total number of projects, 107 are highway projects, nine are airport projects, and one is a railroad project. With regard to the funding level of these projects, 109 of the 117 projects are considered fully funded, and eight projects are not fully funded.

The total cost of the 107 highway projects is estimated at $\$ 1.4$ billion dollars (constant 2003 dollars). Of those projects, 99 are considered fully funded and they are anticipated to cost approximately $\$ 1.2$ billion dollars. Eight projects are considered not fully funded at an estimated cost of approximately $\$ 185.6$ million dollars.

The nine airport projects are fully funded, with a total cost of approximately $\$ 11$ million dollars (constant 2003 dollars). The one railroad project, which also is fully funded, has an estimated cost of $\$ 1.4$ million dollars (constant 2003 dollars).

The projects identified by Texas in the border region reflect only short-term projects through 2005 and do not represent unfunded projects through 2020. Therefore, a funding need of $\$ 185.6$ million dollars is anticipated through 2005. A quantification of long-term funding needs in Texas over the next two decades could not be conducted.

BORDER TRANSPORTATION INFRASTRUCTURE NEEDS ASSESSMENT

Background

The process of globalization can be seen in the integration of the economic, political, and social character of North America. Driving and guiding the forces of globalization are improvements in transportation and communication technology (i.e. the "death of distance") as well as deliberate policy choices, such as NAFTA.

NAFTA has succeeded in increasing trade among the U.S., Mexico, and Canada. As a result, since the introduction of this agreement, U.S. trade with its two partners has doubled. Annual trade along the U.S.-Mexico border reached \$232 billion dollars during 2002.

Along with this increase in trade, problems have arisen because neither the existing transportation corridors nor the ports of entry (POEs) were designed to handle the amount of traffic that they are now attempting to serve. In the U.S., the predominant east-west traffic flows have been shifting to north-south flows. Many of the POEs were built between 1950 and 1970, long before free trade was considered. The result is often long lines, congestion, and unpredictable delays that are estimated to cost private companies and the local, state, and national economies of all three countries millions of dollars every year. In some cases, the linkages between POEs and transportation facilities were not considered. For example, when the Otay Mesa POE in California-Baja California opened it connected to the state's highway system by a four-lane city street that operates at three times its designated capacity.

The success of NAFTA has resulted in increased traffic on North American highways, railroads, as well as at POEs, seaports, and airports. Not surprisingly, the result has been delays and congestion, especially in trans-border corridors.' A more efficient transportation system is needed to achieve expected economic benefits from NAFTA. ${ }^{8}$

U.S.-Mexico: Key Economic Partnership

The growth in trade between Mexico and the U.S. has been substantial between 1995 and 2000. Truck imports into the U.S. increased from about $\$ 42$ billion dollars in 1995 to about $\$ 87$ billion dollars in 2000 while truck exports to Mexico increased from about $\$ 35$ billion dollars in 1995 to about $\$ 82$ billion dollars in $2000 .{ }^{9}$ The growth in rail trade has also been significant as rail imports into the U.S. grew from about $\$ 8.4$ billion dollars in 1995 to about $\$ 21$ billion dollars in 2000. Rail

[^4]exports to Mexico grew from about $\$ 4.7$ billion dollars in 1995 to about $\$ 10.5$ billion dollars in 2000 (see Figure 1). ${ }^{10}$

Figure 1
Surface Trade across the U.S.-Mexico Border In Billions of Current Dollars

Source: U.S Bureau of Transportation Statistics.
Trucks continue to dominate goods movement across the U.S.-Mexico border. In 2002, total U.S.Mexico trade by truck reached $\$ 161$ billion dollars while U.S.-Mexico trade by rail accounted for nearly $\$ 31$ billion dollars. ${ }^{12}$

U.S.-Mexico Trade: Expected to Continue to Grow

Projections of the dollar value of imports from Mexico into the U.S. between 2000 and 2020^{13} indicate that future imports will increase, but at a much slower pace than what occurred between 1995 and 2000. Dollar values of goods imported into the U.S. by trucks are projected to grow about 5.9 percent per year (compound annual growth) while dollar value of goods imported by rail will increase at about 5.7 percent per year. Overall, imports are projected to increase by 5.9 percent per year. The important point to note is that growth rates are positive, but lower than the growth rates from 1995 to 2000.

According to a 1997 study produced by the California Governor's Office of Planning and Research (OPR), trade projections reflect a slowing of growth as we approach 2020, the end of the forecast

[^5]period. ${ }^{14}$ The stimulative effects of trade liberalization and the 1994 Mexican peso devaluation (on the import side) are assumed to diminish through the year 2010, at which time additional gains in bilateral trade may largely depend on normal economic growth. OPR's projection of normal annual growth rates are 5.1 percent for exports and 4.6 percent for imports.

Factors Affecting Future Cross-Border Travel Demand

Growth in bilateral trade and population will result in additional travel demand in both the U.S. and Mexican transportation corridors. In 2000, about 12.5 million people lived in the U.S. counties and Mexican municipios along the U.S.-Mexico border. ${ }^{9}$ Approximately 6.3 million people (51%) resided in the 25 U.S. border counties and about 6.1 million people (49%) lived in the 35 Mexican border municipios. Population in counties and municipios along the U.S.-Mexico border is projected to increase more than 50 percent between 2000 and 2020, from 12.5 million to 19.3 million residents. About 10.5 million people (54%) would reside in Mexico while 8.8 million (46%) would live in the U.S. Figure 2 illustrates population growth projections.

Figure 2
Projected Growth in Population in Border Counties and Municipios
(2000-2020)

Sources: BINS Technical Committee and Mexican National Population Council (CONAPO).
The projected growth in cross-border truck traffic will continue to outpace population growth and indicates that truck traffic will continue to impose a burden on the local communities that surround the U.S.-Mexico border region. Between 2000 and 2020 the number of cross-border trucks is expected to increase from eight million to 14.4 million trucks annually (3.3% per year). ${ }^{15}$

[^6]Three indicators were selected to analyze the current and projected performance of the transportation system along the border region: average annual daily traffic (AADT), congestion (measured by the Level of Service or LOS) and highway capacity at peak hours. Projections through 2020 for these three indicators show that AADT will increase, congestion will worsen, and planned improvements in highway capacity will not keep up with projected increases in traffic volumes, based on the data provided by the BINS Technical representatives (see Figure 3). Increased congestion and resulting delays also would cause negative impacts to the environment and the quality of life of border residents.

Figure 3
AADT, Congestion \& Highway Capacity, 2000 to 2020 Compound Annual Growth Rates

Source: BINS Technical Committee

In Mexico, between 2000 and 2020, AADT ${ }^{16}$ is projected to increase 3.6 percent per year (compound annual rate), while the LOS 17 is projected to worsen from LOS B to LOS C, and highway capacity ${ }^{18}$ is expected to increase about 2.8 percent annually.

[^7]Overall, traffic flow would deteriorate in Mexico on the corridors within 100 km of the U.S.-Mexico border. These conclusions are intended to be indicative of all Mexican corridors, but there are no LOS or highway capacity data for five corridors in two of the Mexican states.

The situation is similar in the U.S.: in the 20 -year period, AADT is projected to increase, congestion would get worse, and highway capacity at peak hours would increase less than the growth in traffic. AADT ${ }^{19}$ is projected to increase 2.1 percent per year (compound annual growth). For four of the five corridors for which data were provided, the LOS 20 is projected to decline while highway capacity at peak hours ${ }^{21}$ is projected to expand only 0.9 percent per year.

Overall, travel conditions would deteriorate in the U.S. on the corridors within 100 km of the U.S.Mexico border. As with Mexico, this analysis is intended to be indicative of the performance of all corridors, but as there are no LOS or capacity data for seven of the 12 corridors in two states - Texas and Arizona - it may not be representative of the performance of all the U.S. corridors. Texas accounts for about 21 percent of the U.S. border region AADT in 2000 and about 24 percent in 2020.

In conclusion, to accommodate the projected growth in trade and population over the next two decades, and its resulting increase in commercial and passenger travel, the transportation system along the border region must be improved.

[^8]
U.S.-MEXICO: STRATEGIC TRANSPORTATION CORRIDORS

Background

Solving the transportation difficulties occurring along the U.S.-M exico border involves a binational planning process (multinational if Canada is included) to create an integrated transportation system. In fact, both countries have shown a commitment to approaching transportation planning and border crossings as a system.

The Intermodal Surface Transportation Efficiency Act of 1991 (ISTEA) contained provisions that specifically identified the need to create an efficient north-south transportation system. As a result of ISTEA, 21 "trilateral corridors" were identified as being of high priority and a number of studies have identified infrastructure and operational deficiencies near the U.S. borders with Mexico and Canada.

Since ISTEA, other corridors have been added to the priority list. Eight corridors were added in the 1995 National Highway Systems Designation Act, and another 14 were added by the passage of the Transportation Equity Act for the 21st Century (TEA-21) in 1998.

TEA-21 contains two programs specifically targeted toward corridor and border transportation improvements: the NCPD and the CBI Program. The purpose of NCPD is to provide allocations to states and metropolitan planning organizations for coordinated planning, design, and construction of corridors of national significance, economic growth, and international and interregional trade. The purpose of CBI is to improve the safe movement of people and goods at or across the U.S. borders with Mexico and Canada. Allocations for these programs are described in the section titled Financing Options for Border Transportation Infrastructure.

Identification of Major Transportation Corridors in the Border Region

The first objective of the BINS project was to develop a set of minimum criteria to be used by the JWC to identify major multi-modal transportation corridors. In the BINS project, a corridor is defined as a combination of modes that move people, vehicles and goods from one location to another. A transportation corridor, then, is not just one road or rail line, but a combination of modes.

Two minimum criteria were established for a transportation facility to be part of a corridor, as follows:

1. All facilities must lie within 100 km of the U.S.-M exico border.
2. Highways and railroads must serve an international POE, and airports and maritime ports must be designated as an international POE.

The corridor definition and the minimum criteria for transportation facilities were used throughout the BINS project and both were approved by the JWC.

Based on the criteria described above, the BINS Technical Committee members were asked to identify transportation corridors, including highways, railroads, airports, and maritime ports that serve the corridors. Within the ten border states, 42 transportation corridors were identified.

In addition to the many highways that serve international POEs, there are also seven railroads that operate within 100 km of the U.S.-Mexico border and cross the border. Also, there are 22 airports and four maritime ports that are designated as international POEs within 100 km of the U.S.-Mexico border.

The BINS project aimed to be inclusive and allow each state to designate its own corridors as long as they met the minimum criteria established. There was a wide range of corridors identified in each state - from one transportation corridor in Arizona, Nuevo Leon, and Sonora to 12 corridors in Baja California, as shown in Figure 4.

The corridors identified in Mexico are very different from the corridors identified in the U.S. In general, the Mexican corridors tend to be more numerous and smaller in size (AADT and highway mileage) than their U.S. counterparts. Figure 5 illustrates the distribution of corridors by AADT in 2000 by country. Looking forward, the corridors in Mexico are projected to grow at a faster rate than the U.S. corridors, but the U.S. corridors will have the largest traffic volume increases.

Figure 4
Number of Transportation Corridors in Each of U.S.-Mexico Border States

[^9]Figure 5
Distribution of Corridor AADT, By Country, Year 2000

Source: BINS Technical Committee.
Maps of Transportation Corridors in the U.S.-Mexico Border Region, International Bridges and Border Crossings, Seaports and Airports Facilities Serving Transportation Corridors in the Border Region, and Railroads Facilities Serving Transportation Corridors in the Border Region are included at the end of this Executive Summary.

Corridor Evaluation Process

The second objective of the BINS project was to develop an evaluation process, accepted by the JWC, to analyze the identified major transportation corridors. Details can be found in Appendix 8 (under separate cover), which includes the corridor evaluations and highway data.

Once the BINS Technical Committee representatives sel ected the transportation facilities within the respective corridors using the minimum criteria, the following data were collected for calendar year 2000 and projections for 2020 for each criterion. Calendar year 2000 was selected as the base or historical year because data were available for all states. Projections to calendar year 2020 were chosen to illustrate how the corridors could change over time. The approved quantifiable data elements used in the corridor evaluation are listed below, organized by mode.

- Highways - AADT, highway length, LOS, and highway capacity and volume at peak hours.
- Land Ports of Entry - Number of passenger vehicles and buses, number of trucks, volume and value of goods transported by truck.
- Airports - Volume and value of goods exported and imported at the airport, share of Mexican/U.S. tonnage and value of goods, runway length for each runway at the airport.
- Maritime Ports - Volume and value of goods exported and imported at the maritime port, number of twenty-foot equivalent containers (TEUs) exported and imported, Mexican/U.S. portion of tons/TEUs/value handled at the port, channel depth of the main channel.
- Railroads - Number of rail cars and TEUs, volume and value of goods that cross the U.S.- Mexico border.

To obtain the data for these criteria, five questionnaires were developed in collaboration with the Technical Committee representatives. These questionnaires were in the form of spreadsheets that could be completed electronically. The Technical Committee members were asked to complete the spreadsheets (a set of questionnaires is included in Appendix 7, under separate cover).

Corridor Evaluation Tool

The third objective of the BINS project was to create a border-wide database and evaluation tool to prioritize each state's transportation corridors based on the methodology and process previously described.

The evaluation tool is a spreadsheet that was designed to include formulas and quantifiable data to conduct the corridor evaluations. The same methodology is applied to each state's evaluation process. Spreadsheets for each border state are different based on:

1. The infrastructure in each border state.
2. The number of corridors specified in each border state.

The methodology used for the BINS project required an ordinal ranking system that could be used as a common denominator, allowing indicators measured in different units to be combined together (dollars, miles, number of rail cars, etc.). Further, quantifiable data were used in the evaluation to allow for easy comparisons and to provide a systematic method to evaluate the transportation corridors. The evaluation methodology was approved by the JWC.

The evaluation was conducted by compiling data, allocating the data to corridors and comparing corridors (within a state) to one another. The evaluations are conducted by ordering the data from highest to lowest to determine need. For example, assuming there are three corridors in a state with the following AADT: 157,000 vehicles (Corridor A), 450,000 vehicles (Corridor B), and 30,000 vehicles (Corridor C). Corridor B is listed first because it has the highest AADT (its evaluation result is 1). Corridor A is second (evaluation result is 2), and Corridor C is third (evaluation result is 3). This process was repeated for each criterion for calendar year 2000, and for the projected absolute and percentage change between 2000 and 2020.

Higher values for the indicators represent more traffic (AADT), more congestion (LOS), more trade (dollar value of air, maritime, rail and truck cargo across POEs), more vehicles (number of passenger vehicles, trucks, buses and rail cars across a POE), which point to both the relative importance of the corridor and its infrastructure needs. The highest value is given "first place" or a score of 1 , and it represents the highest need.

The evaluation results were summed by mode. For example, there are four indicators for highways AADT, the highway length, LOS and the highway capacity at peak hours. If a corridor were listed first for each indicator, its highway score would be a four (a score of one for each indicator). This was done for POEs (five indicators), airports (one indicator), maritime ports (two indicators) and railroads (four indicators).

The overall score for each corridor was then calculated by summing the five modal scores. The corridor with the lowest overall score is listed first and has the highest overall need. The Summary of Findings by State illustrates each state's transportation corridors by priority (pages 8 through 17)

Weaknesses and Strengths of the Corridor Evaluation Methodology
Both the U.S. and Mexico have established requirements and guidelines for transportation planning at the federal and state levels. However, despite these guidelines, the availability of transportation data varied significantly among the states. Long-term traffic projections were by far the most difficult to obtain while current highway AADT was not provided in some cases. LOS data were not consistently provided by the states either. Trade projections also were lacking. Selected data from other sources were obtained.

Despite the lack of a complete dataset for some corridors, all corridors were evaluated. Additional corridor characteristics were considered for those corridors where data for more indicators were provided. Missing or incomplete data, as well as new data that may become available, could be incorporated in future phases of the BINS project.

The BINS project has resulted in the development of a systematic and multimodal approach for evaluating transportation infrastructure needs in the U.S.-Mexico border states. This framework also will be useful for future transportation infrastructure assessments and can be updated to reflect the JWC's evolving areas of emphasis. Findings from these assessments will help decision-makers in the implementation of planning and programming strategies to optimize the efficiency of key multimodal transportation corridors.

U.S.-M EXICO: PLANNED TRANSPORTATION PROJ ECTS ON BORDER CORRIDORS

The fourth objective of the BINS project was to compile a list of significant transportation projects on the corridors based on the projects identified by each state, including the project's description, estimated cost, and anticipated completion date, and to summarize each state's funding needs, as well as those for the U.S.-Mexico border, to implement these transportation projects.

The purpose of compiling transportation project-level information is both to get a sense of the infrastructure improvements planned for the border region and of the unfunded needs identified by the states. Each of the ten states in the BINS project was asked to submit a list of significant projects, on the major transportation corridors, that are planned for the next 20 years.

The project information requested from each state included the following items: the name of the project, county in which the project resides, the project mode (highway, airport, maritime, railroad), a brief description of the project, the year the project is schedule to begin and to be completed, and the cost of the project. Data for the binational geographical information system (GIS) were also requested, such as project's GIS coordinates, date and source of the data, data resolution, coordinate/projection system, description of attributes, documentation of valid values for each attribute, and data limitations.

For highway projects, additional information was requested, including highway project location, LOS for the segment before and after project implementation, and current and projected traffic capacity and AADT of the segment before and after project implementation.

To summarize the amount of funding needed by each state to implement the identified transportation projects, the projects were classified into projects that are fully funded and projects that are not fully funded.

Overview of Transportation Projects in the Border Region

A total of 311 transportation related projects were submitted by the BINS Technical representatives from the ten border states. More than 90 percent of the projects are highway and roadway related projects. Figure 6 shows the distribution of projects by mode for the U.S. and Mexico. The summary of each state's project information is shown in the Summary of Findings.

Figure 6
U.S. and Mexico: Transportation Projects by Mode

Source: BINSTechnical Committee.
Problems encountered included obtaining cost estimates for projects as well as obtaining long-term projects themselves. Of the 311 projects, cost estimates were not obtained for 14 projects. Of the 287 highway projects, no cost estimates were provided for nine projects.

The total cost of the projects submitted is estimated at approximately $\$ 16.3$ billion dollars (in constant 2003 dollars). ${ }^{22}$ This amount is subject to a significant increase with the inclusion of missing cost estimates of projects submitted and of long-term projects from Texas.

Regarding their level of funding, 176 projects (57%) are anticipated to be fully funded through 2020 while the remaining 135 projects (43%) are not fully funded.

Highway projects represent about 83 percent of the total cost of the projects. Railroad projects account for almost 17 percent of the total cost; however, no cost data were provided for two of the 11 railroad projects. Airports only represent 0.2 percent of the total project cost; however, no cost data were provided for one third of the airport projects.

United States

The BINS Technical Committee representatives for the four U.S. border states identified 258 transportation projects, at an estimated cost of $\$ 15.3$ billion dollars. A significant share of these projects (41%) is considered not fully funded and represents a need of $\$ 10.6$ billion dollars. This amount is subject to a significant increase with the inclusion of missing cost estimates of not fully funded projects submitted and of long-term projects from Texas. Nearly all of the identified funding need is related to highway projects or $\$ 10.5$ billion dollars.

Of the 258 projects, 236 (91%) are highway projects, 12 (5\%) are airport projects, and ten (4\%) are railroad projects. Regarding their funding level, 151 of the 258 projects are considered fully funded, and 107 projects are not fully funded (see Figure 7). Of the 258 projects, 14 have no cost estimates.

Figure 7

U.S.: Projects by Funding Availability

Source: BINSTechnical Committee.

[^10]Of the 236 highway projects, 137 (58\%) are considered fully funded, and 99 (42\%) are not fully funded. Nine highway projects do not have cost estimates. Projects without cost are assumed to be not fully funded.

The anticipated cost of the 137 fully funded highway projects is about $\$ 3.9$ billion dollars (in constant 2003 dollars). These projects range from a cost of about $\$ 448$ million dollars (largest) to approximately $\$ 36,000$ dollars (smallest).

The total cost of the 90 not fully funded projects (with cost data) is about $\$ 10.5$ billion dollars (in constant 2003 dollars). These projects range from a cost of approximately $\$ 900$ million dollars (largest) to about \$393,000 dollars (smallest).

Of the 236 highway projects, expected completion dates were provided for 78 projects. Figure 8 shows the distribution of projects by implementation date.

Figure 8
U.S. Highway Projects by Year of Completion

Source: BINSTechnical Committee.

Of the 12 airport projects, nine are considered fully funded, and three are not fully funded and have no cost estimates. The anticipated cost of the nine fully funded airport projects is about \$10.9 million dollars (in constant 2003 dollars).

Of the ten railroad projects, five are considered fully funded, and five are not fully funded. Two projects do not have cost estimates. The anticipated cost of the five fully funded railroad projects is about $\$ 812.6$ million dollars (in constant 2003 dollars). The total cost of the three not fully funded projects (with cost data) is about $\$ 112.5$ million dollars (in constant 2003 dollars).

The fully funded projects will help accommodate the projected growth in travel demand in the U.S. corridors over the next two decades. However, there is a significant share of not fully funded highway projects (42%), which represent an identified need of $\$ 10.5$ billion dollars, and additional resources needed for airport and railroad projects. Also, this amount is subject to a significant increase with the inclusion of missing cost estimates of not fully funded projects submitted and of
long-term projects from Texas. More funding is needed for the U.S. border states to be able to deliver planned transportation projects to serve future travel and alleviate current or projected congestion on key facilities in the international border region.

Mexico

The BINS Technical Committee representatives for the six Mexican border states identified 53 transportation projects, with an anticipated cost of $\$ 10,773$ million pesos. However, slightly more than half of the projects (53\%) are not fully funded and represent an identified need of \$9,030 million pesos. Almost all the funding need identified corresponds to highway projects or $\$ 8,878$ million pesos.

Of the 53 projects, 51 (96\%) are highway projects, one project (2%) is airport related, and one project (2%) is railroad related. Regarding their funding level, 25 of the 53 projects are considered fully funded, and 28 projects are not fully funded (see Figure 9).

Figure 9
Mexico: Projects by Funding Availability

Source: BINSTechnical Committee.
Of the 51 highway projects, 25 (49\%) are considered fully funded, and 26 (51\%) are not fully funded.
The total cost of the 25 fully funded highway projects is estimated at $\$ 1,743$ million pesos (in constant 2003 pesos). These projects range in cost from about $\$ 425$ million pesos (largest) to approximately $\$ 5$ million pesos (smallest).

The total cost of the 26 not fully funded highway projects is about $\$ 8,878$ million pesos (in constant 2003 pesos). These projects range in cost from approximately $\$ 1,500$ million pesos (largest) to about $\$ 3$ million pesos (smallest).

Of the 51 highway projects, scheduled completion dates were provided for 49 of the projects. All projects are anticipated to be implemented before 2010, with 44 of them completed before 2006 and five between 2007 and 2008.

The one airport project is considered not fully funded and has a total cost of about $\$ 62$ million pesos (in constant 2003 pesos). The one railroad project is considered not fully funded and has a total cost of about $\$ 90$ million pesos (in constant 2003 pesos).

The fully funded projects will help accommodate the projected growth in travel demand in the Mexican corridors over the next two decades. However, slightly more than half of the highway projects (51\%) are not fully funded, which represents a need of $\$ 8,878$ million pesos, plus additional resources for airport and railroad projects. Only with this funding would Mexico be able to implement planned transportation projects to serve future travel and improve current or projected congestion on major facilities in the international border region.

Data Issues

Not all the transportation project data requested were provided by the states, including complete project description, cost estimates, and project funding availability. Some states submitted planned transportation projects in the short- and medium-term, but not through 2020.

The lack of complete data for planned projects limited the BINS project ability to provide an estimate of long-term funding needs for border transportation infrastructure for some states. Missing data, as well as new information that may become available, could be incorporated in future phases of the BINS project.

Projects in the Ports of Entry

In addition to the transportation projects identified by the ten border states, there are 55 POE projects along the U.S. - Mexican border that are anticipated to be implemented through 2012. Eighteen of those are in the POE facilities in the U.S., while 37 of them are in the POE facilities in Mexico. Figure 10 shows the number of POE projects by state.

The U.S. General Services Administration (GSA) provided a list of projects, including a brief description. Projects include proposals for expansion of existing facilities, operational improvements to separate truck traffic from passenger vehicles, or construction of new border stations.

SCT provided a list of projects in Mexican POEs. Proposed improvements include modernization and expansion of facilities as well as construction of new border crossings.

Figure 10
U.S.-Mexico POE Projects by State

Source: SCT and GSA

FINANCING OPTIONS FOR BORDER TRANSPORTATION INFRASTRUCTURE

The fifth and last objective of the BINS project was to investigate traditional and innovative methods to fund border transportation infrastructure needs. This section describes the funding processes in the U.S. and Mexico and it also introduces the concept of innovative financing to provide an understanding of the funding opportunities for transportation projects within the identified corridors.

Traditional Financing Sources in the United States

In the U.S., most of the funding for transportation projects is allocated at the federal and state levels, while the majority of planning occurs at the regional level. Congress authorizes multi-year transportation funding levels through legislation such as TEA-21, followed by annual appropriations through the budgetary process. The funds are administered by the U.S. DOT through FHWA, and the Federal Transit Administration (FTA). For highways, FHWA apportions funds to state DOTs by formula. The states prioritize the financing of transportation infrastructure projects statewide, and consequently along the border. Metropolitan Planning Organizations also play an important role in establishing funding priorities for transportation projects.

TEA-21 builds on the initiatives established in ISTEA, which was the last major authorizing legislation for surface transportation. TEA-21 expired on September 30, 2003 and a new funding act is expected in the upcoming months.

Traditional Financing Sources in Mexico

Mexico's transportation funding system is characterized by its centralization. This means the majority of transportation funding and planning originates at the federal level. The federal government is responsible for interstate or federal highways, international border crossings, bridges, and border roadways. However, within the past few years the federal government is becoming more de-centralized, giving states and municipalities more involvement and responsibility in the transportation planning process.

The planning process starts at the federal level typically with the SCT, while the SRE acts as a communicator for binational relations. Federal funds are largely derived from the national income tax. These funds are then distributed to state and local governments.

The State Urban Development and Public Works Departments are in charge of planning at the state level, as is the case of the State Secretariat of Infrastructure and Urban Development (Secretaría de Infraestructura y Desarrollo Urbano Estatal (SIDUE)) in Baja California. These agencies have similar functions to state transportation departments in the U.S.

Border and Corridor Grant Opportunities

In addition to funds allocated to U.S. states by Congress through a formula, TEA-21 provides two sections of supplemental funding for projects serving international trade in the border region. These are the CBI Program and the NCPD Program. Each program provided for $\$ 70$ million dollars per year for the period between 1999 and 2003.

However, the need for improvements greatly exceeds the availability of public funds in these programs. For example, eligible applications for 1999 and 2000 totaled approximately $\$ 2$ billion dollars, compared to the $\$ 280$ million dollars available for those two years. The Administration's reauthorization proposal, dated May 13, 2003 and known as the Safe, Accountable, Flexible and Efficient Transportation Equity Act of 2003 (SAFETEA), recognizes the need for improvements by increasing the funding under the new versions of this program (Section 1806 Multi-State Corridor Planning Program with $\$ 76.5$ million dollars the first year and $\$ 84$ million dollars thereafter, and Section 1807 Border Planning, Operations, and Technology Program with $\$ 76.5$ million dollars the first year and $\$ 84$ million dollars thereafter). Additionally, recognizing the binational nature of the required projects, Section 1807 contains a provision for allowing projects in Canada or Mexico proposed by the border states that directly and predominantly facilitate crossborder vehicle and commercial cargo movements at the states' POEs to use funds allocated under this program, given assurances related to construction standards and maintenance of the project.

Table 1 indicates how the funds were allocated in FY 1999 through FY 2003. Of the approximately $\$ 1.1$ billion dollars allocated, a large share of the funds went to Texas and California. However, in
total, non-border states received nearly twice as much funding from these programs as the states that border Canada and Mexico.

In 2002, a large amount of additional funding was obtained for these two programs through Section 1105 of the TEA-21 legislation ("Revenue and Aligned Budget Authority"), increasing the total amount of funds awarded to $\$ 492$ million dollars.

Table 1
CBI and NCPD Allocations by State, FY 1999-FY 2003

	FY 1999-FY 2003	Percent of CBI/ NCPD Funding (1)
Individual Southwest Border States:		
Arizona	$\$ 11,223,343$	1%
California	$\$ 61,631,218$	6%
New Mexico	$\$ 10,971,000$	1%
Texas	$\$ 90,524,701$	8%
Total U.S. States Bordering Mexico	$\$ 174,350,262$	16%
Total U.S. States Bordering Canada	$\$ 196,447,453$	18%
All U.S. Border States	$\$ 370,797,715$	34%
Non-border States	$\$ 725,240,015$	66%
Total of Border and Non-border States	$\$ 1,096,037,730$	100%
GSA	$\$ 6,292,338$	
Total CBI/ NCPD Funding	$\$ 1,102,330,068$	

(1) Funds allocated to GSA are not included in the computation of the Percent of CBI/NCPD Funding. Source: U.S. DOT, FHWA

In the case of Mexico, funding for transportation projects is strongly dependent on federal resources. This dependency can be traced back to Mexico's centralized governmental system. Even though Mexico has begun a process of decentralization in which state and local governments are developing their own funding techniques, there is a significant reliance on federal funds to implement transportation projects. Some partnerships among local, state, and federal funding sources also have taken place.

Scarcity of transportation funding can prove challenging for states along the border as they attempt to fulfill the increased demand for transportation infrastructure. Two possible solutions to this problem are described in the remainder of this section.

First, the application of innovative financing techniques should be studied. Innovative finance initiatives respond to the need to supplement rather than replace traditional financing techniques. An inventory of conventional and innovative financing options has been created and is contained in the BINS final report. ${ }^{23}$

Second, the evaluation of major border transportation corridors along the U.S. - Mexico border should be updated regularly. The BINS project developed an evaluation process and tool to analyze

[^11]and prioritize each state's transportation corridors. This analysis gives states a quantitative guide to organize projects based on the infrastructure needs of their corresponding corridor. The BINS methodology takes a multimodal approach to gathering data for road, rail, maritime, airport, port of entry, and intermodal facilities. By using this quantitative method, transportation funding can be distributed giving priorities to the identified needs of corridors.

Innovative Financing

Innovative finance, as it relates to funding transportation projects, refers to non-traditional methods of financing transportation projects. Innovative Finance for transportation is a broadly defined term that encompasses a combination of specially designed techniques that supplement traditional highway financing methods. While many of these techniques may not be new to other sectors, their application to transportation is innovative (Innovative Financing is explained in detail in Chapter 5).

Because of a consistent shortfall in financing from traditional funding sources, both in the U.S. and Mexico, creative new ways to finance are needed on both sides of the border to encourage an adequate quality of travel in the border region. Transportation officials at all levels of government face a significant challenge when considering ways to pay for improvements to transportation infrastructure. Traditional government funding sources are insufficient to meet the increasingly complex and diverse needs of the border transportation system. Despite record levels of investment in surface transportation infrastructure in recent years, funding is not keeping pace with demands for improvements to maintain the vitality of the nation's transportation system. As forecasts have shown in this study, demand for transportation services is outpacing the supply of highway capacity by a two to one factor in the U.S.-Mexico border region.

> | Technical Appendices |
| :--- |
| January 2004 |
| Source Point |
| |
| 401 B Street, Suite 800 |
| San Diego, CA 92101 |
| (619) 595-5353 |

TABLE OF CONTENTS

APPENDIX 1: BINS TECHNICAL COMMITTEE CONTACTS 1-3
APPENDIX 2: BINS INITIAL SCOPE OF WORK 2-3
APPENDIX 3: BINS FRAMEWORK 3-3
APPENDIX 4: LISTING OF DELIVERABLES 4-3
APPENDIX 5: FORM AL COM M UNICATIONS 5-3
APPENDIX 6: MEETING MINUTES 6-3
APPENDIX 7: SURVEY INSTRUM ENTS 7-3
APPENDIX 8: CORRIDOR EVALUATIONS AND HIGHWAY DATA 8-3
APPENDIX 9: TRANSPORTATION PROJ ECTS DATA 9-3
APPENDIX 10: STATISTICAL TABLES 10-3
APPENDIX 11: LIST OF LITERATURE AND LEGISLATIVE SOURCES 11-3
APPENDIX 12: GLOSSARY OF TERM S 12-3
BIBLIOGRAPHY B-3

APPENDIX 1: BINS TECHNICAL COMMITTEE CONTACTS

APPENDIX 1: BINS TECHNICAL COMMITTEE CONTACTS

UNITED STATES

Arizona

Arnold Burnham - Arizona Department of Transportation
Priority Programming Manager
Phone: (602) 712-8591
Fax: (602) 712-3046
Email: aburnham@dot.state.az.us

California

Mark Baza - California Department of Transportation
Chief, Transportation Planning
Phone: (619) 688-2505
Fax: (619) 688-2598
Email: Mark.Baza@dot.ca.gov

Sergio Pallares - California Department of Transportation
Chief, International Border Studies
Phone: (619) 688-3136
Fax: (619) 688-6655
Email: Sergio.Pallares@dot.ca.gov

New Mexico

Adrian Apodaca - New Mexico State Highway and Transportation Department International Programs / Regional Planning
Phone: (505) 523-0615
Fax: (505) 524-6060
Email: adrian.apodaca@nmshtd.state.nm.us

Michael Noonchester - New Mexico State University
Program Manager--Border Technology Deployment Center
Phone: (505) 521-9503
Fax: (505) 521-9600
Email: mnoonchester@psl.nmsu.edu

Texas

Mary DeLeon - Texas Department of Transportation
Transportation Planner
Phone: (512) 486-5017
Fax: (512) 486-5040
Email: mdeleon@dot.state.tx.us

Federal Highway Administration
Lisa Dye
Internal Transportation Engineer
Phone: (619) 595-5644
Fax: (619) 595-5305
Email: lisa.dye@fhwa.dot.gov
Sylvia Grijalva
US/Mexico Border Planning Coordinator
Phone: 16023794008
Fax: (602) need number
Email: sylvia.grijalva@fhwa.dot.gov
\section*{MEXICO}

Baja California

Arq. Carlos López Rodríguez -- Secretaría de Infraestructura y Desarrollo Urbano del Estado (SIDUE) Director de Planeación Urbana y Regional
Phone: 011526865581062
Cell: 011526865697181
Fax: 011526865581062
Email: clopez@baja.gob.mx

Chihuahua

Ing. Joaquin Barrios - Secretaría de Comunicaciones y Obras Públicas
Residente de Estudios y Proyectos
Phone: 01152614432044
Cell: 0115261448819680
Fax: 011526144181816
Email: jbarrios@buzon.chihuahua.gob.mx

Coahuila

Ing. Noe García Riojas -- Secretaría de Urbanismo y Obras Públicas del Estado Director de Estudios y Proyectos
Phone: 011528444155221
Fax: 01152844151996
Email: gario@prodigy.net.mx, 344@prodigy.net.mx

Adela Blanco
Phone: 011528444155221
Email: ablanco@sfcoahuila.gob

Nuevo León

Ing. Evaristo Gaytan - Gobierno de Nuevo León
Director General de Sistema de Caminos de Nuevo León
Phone: 011528183440550
Fax: 011528183400083
Email: scaminosnl@infocel.net.mx

Sonora
Ing. Héctor García - Secretaría de Infraestructura de Urbana y Ecológica (SIUE)
Coordinador Técnico
Phone: 011526622131900
Fax: 011526622131900
Email: hgarcia@rtn.uson.mx, cartog@hmo.megared.net.mx
Tamaulipas
Ing. Ernesto Morris Delgado - Secretaria del Desarrollo Económico y del Desempleo Director
Phone: 011528343189550
Fax: 011528343189577
Email: dgicico@tamaulipas.gob.mx
\section*{Secretaría de Comunicaciones y Transportes}
Ing. Oscar Ringenbach
Subdirector de Análisis de Transporte Fronterizo
Phone: 01152555196484
Fax: 011525555198671
Email: ringenba@sct.gob.mx

APPENDIX 2: BINS INITIAL SCOPE OF WORK

APPENDIX 2: BINS INITIAL SCOPE OF WORK

INTRODUCTION

Since the passage of the North American Free Trade Agreement (NAFTA) the U.S.-Mexico crossborder movement of both people and goods has had robust growth. This growth has placed pressure on the existing transportation infrastructure and has underscored the need for improved binational coordination, planning, and development of transportation facilities. For example, in California, trade activity with Mexico has surpassed Japan and Canada to becoming California top trade partner, with more than $\$ 29$ billion in annual trade. The value of goods in California represents an increase of approximately 149% since 1994. In an effort to redefine current and anticipated transportation infrastructure needs along the border region, the U.S.-Mexico Joint Working Committee (JWC) will be conducting a binational border transportation infrastructure needs assessment study.

The JWC consists of transportation and planning agency representatives from the four U.S. states and six Mexican states that abut the border and representatives from selected federal agencies from both the U.S. and Mexican governments. Key components to be undertaken in this study will include the implementation of a thorough data collection effort of transportation facilities, and identification and assessment of major trans-border corridors and projects. The findings resulting from this study also will provide input to the reauthorization of the Transportation Equity Act for the $21^{\text {st }}$ Century (TEA 21) in order to ensure future financing for international border transportation investment needs. On the U.S. side, SourcePoint, a nonprofit corporation charted by the San Diego Association of Governments (SANDAG) will serve as the lead agency on behalf of the California Department of Transportation (CALTRANS) and the Secretariat of Infrastructure and Urban Development of the State of Baja California (SIDUE) - formerly the Secretariat of Human Settlements and Public Works of the State of Baja California (SAHOPE) - is to serve as the lead agency on the Mexican side.

BACKGROUND

Within the United States, TEA-21, PL 105-178, which became law 9 June 1998, provided some dedicated resources to address the needed increased transportation facilities in Sections 1118 (National Corridor Planning and Development Program) and 1119 (Coordinator Border Infrastructure Program). However, these programs have not provided sufficient funding to cover border area transportation needs and these sections of TEA-21 are to terminate with TEA-21 at the end of the 2003 federal fiscal year.

TEA-21, Section 1213(d), Southwest Border Transportation Infrastructure, called for the Secretary of the Department of Transportation to "conduct a comprehensive assessment of the state of the transportation infrastructure on the southwest border between the United States and Mexico". This study was undertaken; however, it did not perform a transportation corridor analysis and needs assessment for the U.S.-Mexico border region. The study to be undertaken as described in the next
section is intended to carry out a transportation corridor analysis and needs assessment and other efforts not performed by the above report.

PROJECT DESCRIPTION

The proposed Binational Border Transportation Infrastructure Needs Assessment Study (BINS) will be the product of a coordinated effort of transportation and planning agencies within the ten U.S. and Mexican Border States. Findings resulting from this study are expected to reflect an innovative and comprehensive approach to identifying border transportation deficiencies, issues, and recommendations that will address the following goals and objectives:

1. Establish a broadly accessible border-wide data bank with protocol for an ongoing updating process; closely coordinate the development of the databank with work on the Binational Geographic Information System tasks.
2. Update border region transportation infrastructure needs;
3. Identify major trans-border transportation corridors within the 100 kilometers band in the U.S. and in Mexico;
4. Assess the transportation infrastructure needs of these corridors to adequately serve present and future cross-border travel and trade;
5. Identify necessary projects and their estimated costs to address short-term (now) and long-term, as defined by the JWC;
6. Explore traditional and innovative funding mechanisms to remedy the identified needs;
7. Identify existing and proposed major traffic generators that may significantly impact these Binational transportation corridors (e.g. 1. large commercial/industrial developments, 2. international airport expansions, 3. major intermodal facilities); and
8. Develop and make broadly accessible a preliminary Binational Geographic Information System (BGIS) platform for transportation within the U.S.-Mexico border region.

Study Organization and Participation

It is proposed to undertake the subject study in two separate efforts. First, SourcePoint will be responsible for completing the initial seven goals and objectives and, second, CALTRANS headquarters staff will be responsible for carrying out the eighth objective listed above (BGIS). Although discussion of the BGIS is limited in this document, it is necessary to integrate the two projects to ensure compatibility of the information collected. A preliminary scope of work for the BGIS is included in Attachment I for reference. SourcePoint will be expected carry out the services set in the BINS effort and work cooperatively with CALTRANS and others to ensure coordination between the two separate efforts, BINS and BGIS. A detailed scope of work for the BINS effort is set in the following section (Phase I, I-A, and II), and is comprised of three phases as follows:

- Phase I: Data Collection Framework - presently funded for a maximum of $\$ 150,000$;
- Phase I-A: California Transportation Corridor Assessment, Evaluation, and Recommendations presently funded at a maximum of \$40,000; and
- Phase II: Transportation Corridor Assessment, Evaluation Criteria, and Recommendations for Remaining Agencies - presently funded for a maximum of \$150,000.

SourcePoint on behalf of CALTRANS will serve as the lead agency in coordination with the Secretariat of Infrastructure and Urban Development of the State of Baja California (SIDUE) formerly the Secretariat of Human Settlements and Public Works of Baja California (SAHOPE) - for all phases of the BINS effort. All references to written deliverables in the following scope of work include at least one draft and one final version, unless otherwise specified. CALTRANS, the JWC Subcommittee, and the JWC member agencies will review all draft versions. Comments will be integrated into the final version of the deliverable. The time to review and comment on the drafts of the task reports by the JWC member agencies will be scheduled to not exceed two weeks from the time the deliverables are received. Throughout completion of the study SourcePoint or represented Consultant will be required to attend out-of-state JWC meetings, and meetings with CALTRANS District staff as appropriate.

Area of Study and Border Corridors

It is understood that for the purpose of data collection the "area of study" is the border region defined as 100 kilometers on each side of the international border for Phase I and IA. Phase II of the BINS work efforts is to place emphasis on certain "border corridors" that will be agreed upon by the JWC Subcommittee.

Schedule and Budget

SourcePoint's services for this project will entail the completion of those elements identified in the scope of work within the project budget described above. All work expected under this study is anticipated to be completed by the proposed schedule and corresponding budget as outlined in detail in the scope of work section.

JWC Subcommittees

All work conducted by the SourcePoint will be under the support of CALTRANS and the U.S.-Mexico Joint Working Committee (JWC) appointed Technical subcommittees; the Border Infrastructure Needs Assessment (BINS) Committee and the Binational Geographic Information Systems (BGIS) Technical Committee. Members of both the BINS and BGIS will include representatives of the JWC member agencies and will include transportation officials of the four U.S. and six Mexican states and representatives from selected federal agencies from both the U.S. and Mexican governments.

SCOPE OF WORK

The subsequent sections outline the major activities seen as necessary to the deliver the BINS project. Key to the BINS effort is that SourcePoint have the ability to coordinate and extensive data collection effort and processing, work cooperatively with the JWC Technical Committee members,
and have an understanding of border transportation issues. The tasks to be undertaken will include but are not limited to the following:

PHASE I: Data Collection Framework

SourcePoint will develop and implement a data collection and literature review strategy as described below. It is essential that the needs of the JWC be identified to assure that the appropriate data be collected to ensure the support of subsequent tasks included in Phase I-A, and Phase II. It is expected that Phase I will be completed by March 2003. Specific tasks to be carried out in this phase shall include:

Task 1:Literature Review

SourcePoint will identify, review, and annotate applicable literature addressing border region transportation and its growth and adequacies as requested by JWC member agencies. Sample literature will include, but not limited to, a summary of the economic and other forces driving the need for border transportation improvements, federal and state legislation from both the U.S. and Mexico, updated information or planning studies, and border type studies relating to the growth and operation of the border region's transportation system. This task is to remain open so that it is up to date at the termination of the BINS project.

Task 2:Data Requirements

Work closely with JWC BINS Committee members to identify data requirements to be used by each state to determine their border area transportation infrastructure needs. Prepare sample summary sheets (hard copy and electronic) with examples of data requirements developed for similar projects including, but not limited to, the types of data requirements provided in Attachment II. Prepare and submit a Data Requirements Memo that will incorporate the sample summary sheets for presentation, review, and approval. Submit memo to BGIS Committee for comments.

Upon approval of the data requirements, SourcePoint will develop suitable bilingual forms to be used by each U.S. and Mexican State to aggregate their input. SourcePoint will review the forms with CALTRANS and SIDUE (formerly SAHOPE), and after their approval, develop and present a technical report covering data requirements to the JWC BINS Committee.

The data requested from each Border State is to be that judged necessary to support implementation of border region transportation infrastructure needs to the year 2020 as well as present needs. The data, as a minimum, is to address the following components:

- Ports of Entry (POE)
- Highways
- Railroads
- Intermodal facilities
- Seaports handling significant international cargo
- International airports
- Population, housing units, employment and income (present and as projected for 2020 for each region or subregion by volume and annual estimated growth percent)

Deliverable

1. Prepare a Data Requirements Memo

2. Data Requirements Technical Report

Task 3: Request Data

Upon approval of data collection forms for data input, SourcePoint will request data from each of the Border States and follow up request as warranted with the JWC BINS Committee. SourcePoint will respond to questions that may arise and produce a report consolidating the data from the various states for review.

It is anticipated that many agencies will have existing readily available data in different formats including databases, maps, and documents. It is also anticipated that there will be inconsistencies in available data between each agency. SourcePoint will be responsible for consolidating and assessing the quality of data received and will work cooperatively to provide the necessary support to the JWC BINS Committee members to ensure that the appropriate data is included in the data collection forms. Coordinate data review with BGIS Committee.

SourcePoint will prepare and present status reports to CALTRANS and the JWC BINS Committee that will briefly address the progress, the quantity, and quality of data received, and identifies any problems or issues encountered during this process.

Deliverable

3. Data Requests Progress Reports - to be presented to Coincide with JWC meetings

Task 4:Database System Plan

SourcePoint will develop criteria and recommendations for establishing a border-area database. Each state shall be responsible for implementing and maintaining their state's database. The BGIS Committee will review the database system plan.

SourcePoint will prepare a Database System Plan that will define possible recommendations for consolidating and managing the data, and defining how the database will be structured and formatted to meet the needs of its prospective users. The Plan will also document technical or other related issues such as database management, maintenance, and reporting capabilities. Recommendations will need to be coordinated with other CALTRANS or JWC ongoing efforts to ensure consistency and allow for future integration such as:

- Review and update as necessary the Database developed under the U.S. Mexico Binational Border Transportation Planning and Programming Study. Tasks reports are available at the following FHWA website: www.fhwa.dot.gov/binational/reports/reports.html
- Coordination with BGIS data gathering related efforts;
- To provide a brief description on software available that is compatible with GIS applications with specific reference to CALTRANS/JWC current and future GIS efforts.

Deliverable

4. Border-Area Database System Plan

Task 5: Final Report, Phase I

SourcePoint will produce a Phase I final report that will document and incorporate all deliverables included in the previous tasks. The report is to include updated literature review (an annotated bibliography) and the final versions of all deliverables generated by Phase I of the study, the data from the other border states, and any issues or problems that should be addressed in Phase II.

Deliverable

5. Phase I Final Report

PHASE I-A: California Transportation Corridor Assessment, Evaluation, and Recommendations

Based on reports, work efforts and deliverables from the previous phase, SourcePoint will consolidate and present data focused on California transportation corridors. Work efforts under this phase will parallel key activities undertaken in Phase II. Subsequently, the intent is to apply the evaluation criteria/factors developed under the BINS Phase II efforts, and working with CALTRANS to develop and identify evaluation criteria/factors specific to California's' needs. The evaluation criteria/factors will be used for prioritizing transportation corridors, and perform a border infrastructure needs assessment intended to result in recommended transportation projects to satisfy needs of border-oriented transportation corridors serving California. This phase is funded by the State of California at the maximum amount of $\$ 40,000$, and is expected to be completed by May 2003. Specific tasks to be carried out in this phase shall include:

Task 1:California Data

Upon completion of data collection effort, SourcePoint will assemble all data covering the California region. SourcePoint will review the results with all the appropriate agencies in California including CALTRANS, the Southern California Association of Governments, the Imperial Valley Association of Governments, and others as found appropriate.

Deliverable

6. California Data Report

Task 2: California Transportation Corridor - Evaluation Factors

SourcePoint will apply evaluation criteria/factors developed under the BINS Phase II efforts, and or additional criteria to be determined CALTRANS for determining priority corridors to serve the binational border within or, in the case of $\mathrm{I}-10$, adjacent to the border region of California.

SourcePoint and CALTRANS will mutually define the extent of factors, and detail analysis to be undertaken for this effort. The results of this task will be used to 1) determine priority corridors and 2) measure the corridor and/or infrastructure deficiencies and needs. A preliminary list of evaluation criteria to be considered is described in Attachment III. The proposed criteria should also include existing and proposed major traffic generators along the individual corridors that may significantly impact traffic, travel time, and the environment.

Deliverable

7. California Corridor Evaluation Factors Report

Task 3: California Transportation Corridors - Present and Future Needs

SourcePoint will perform a Border Analysis Infrastructure Needs Assessment Study for the California region. The Study will determine priority corridors to serve the binational border and identify infrastructure needs and deficiencies along these corridors and will also look at funding related issues, such as identifying existing possible funding resources or innovative financing strategies to address deficiencies/needs.

Deliverable

8. Border Analysis Infrastructure Needs Assessment Study - California Region

Task 4: Final Report

SourcePoint will produce a final report to document the completed study. The final Report will include updated literature review (an annotated bibliography) and will compile final versions of all deliverables produced in this phase.

Deliverable

9. Phase I-A Final Report

PHASE II: Transportation Corridor Assessment, Evaluation Criteria, and Corridor Recommendations for Remaining Agencies

Phase II is designed to supplement the work elements undertaken under Phase I and IA and will focus on carrying out the transportation corridor assessment effort for the remaining agencies. Additional key efforts will include reviewing the corridor data from all the participating agencies, the development of evaluation criteria and factors for evaluating and prioritizing transportation corridors, and performing a border system wide infrastructure needs assessment, and submitting corridor and project level recommendations. SourcePoint or represented Consultant is expected carry out, coordinate, and provide the necessary services as described below. It is expected that Phase II will be completed by November 2003.

Task 1:Data Review and Identify Key Corridors

Once all the data is reviewed, consolidated, and assessed for quality per Task 3 of Phase I, SourcePoint will work with the JWC BINS Committee to identify key current and projected north/south transportation corridors serving the U.S.-Mexico border and the east/west corridors necessary to distribute or accommodate border traffic. The selection of these corridors should take into account, as a minimum, location of facilities, owner/operator information, and any other information on existing and future operations including connections between modes. Additional corridor elements should be based on data findings completed under Tasks 2 of Phase I (refer to Attachment II).

Deliverable

10. Key Borders Corridor Report

Task 2:Development of Corridor Evaluation Criteria

After SourcePoint and the JWC BINS Committee submit their identified key corridors, SourcePoint will work with the JWC BINS Committee to develop an evaluation criteria/factors to be used by the individual Border States to prioritize their identified transportation corridors, and projects within corridors. After JWC BINS Committee approval of the evaluation criteria/factors, SourcePoint will disseminate the evaluation criteria to the participating agencies along the nine Bordering States and request that each agency perform a priority corridor evaluation analysis, and come up with corresponding project improvements. Project corridor evaluation criteria/factors shall address such issues as:

- Capacity (uniform standards need to be developed)
- System continuity
- Level of Service (LOS - volume/demand to capacity)
- Costs
- Environmental Impacts
- Safety
- Enforcement
- Travel Time
- Cost Benefit
- Socioeconomic Changes
- Land Use Compatibility
- Short-term Completion Potential
- Intelligent Transportation System

Deliverable

11. Corridor Evaluation Criteria/Factors Technical Memo
12. Corridor Evaluation Analysis Results and Proposed Corresponding Projects Memo

Task 3: Corridor and Project Review

As the participating agencies submit their corridor evaluation analysis, SourcePoint will work the JWC BINS Committee to review their findings for criteria/factors conformance, and review the corresponding corridor projects as submitted by the agencies. Key efforts will include ensuring that the submitted priority corridors are indeed essential to cross-border interstate and international goods movement from both the U.S. and Mexican side. SourcePoint will then prepare and submit an aggregate priority corridor list/findings and preliminary corresponding corridor project improvements to the JWC for their review and comments.

Deliverables

13. Final Corridor Priority List/Findings and Project Improvements Memo

Task 4: Corridor Project Recommendations

Upon review of the Corridor Priority List/Findings, and comments and approval of the corridor project improvements by the JWC, SourcePoint will work with the BINS Committee to develop and performing a border system wide infrastructure needs assessment. The border system wide infrastructure needs assessment will include discussions on key project elements such as setting short and long-term priorities, and the identification of possible funding resources. Additionally, SourcePoint will work with the JWC to develop a prioritized list of provisions for inclusion in TEA 21 reauthorization, and legislation for Mexico's federal government that support international border transportation corridor related projects. Possible funding sources for the project priority list may include:

- Existing Federal or State resources available
- Possible future legislation resources
- Possible innovative financing
- Public/Private partnerships
- Multi-agency or multi-state
- Other

Deliverable

14. Border System Wide Infrastructure Needs Assessment Report and Federal Legislation Memo

15. Federal Legislation Recommendation Memo

Task 5:Final Report

SourcePoint will produce a final report that will document all efforts undertaken by Phase II. The Final Report will include updated literature review findings (and annotated bibliography), and summary of tasks by tasks findings accomplished during Phase II along with a synopsis of Phase I, and 1 A key findings.

Deliverable

16. BINS Phase II Final Report

BINS Project Schedule and Budget

APPENDIX 3: BINS FRAMEWORK

APPENDIX 3: BINS FRAMEWORK

FRAMEWORK FOR COMPLETING THE BINS PROJECT: "IMPROVING THE CROSS-BORDER FLOW"

```
Levels of Review:
SourcePoint }->\mathrm{ CALTRANS }->\mathrm{ BINS Technical Committee }->\mathrm{ Joint Working Committee
```

Project Goals: A Standardized Quantifiable Methodology for Evaluating Border-Related Transportation Corridors and a Listing of Transportation Related Projects on Selected Binational Transportation Corridors

PHASE I

1. LITERATURE REVIEW (On going throughout entire study). SourcePoint will collect, review, and summarize literature addressing border region transportation.
a. Planning Process: Create a synopsis of the U.S. and Mexican Transportation Planning and Programming Processes.
b. Bibliography: Prepare a bibliography and annotated bibliography of the relevant studies and articles.
2. Corridor Evaluation Procedure \& Methodology. SourcePoint will develop a procedure to create a corridor evaluation methodology.
a. Procedure:
i. SourcePoint will review other corridor studies to ascertain methods for specifying and evaluating transportation corridors. It will also develop the rationale to utilize specified data elements in the corridor evaluation process.
ii. SourcePoint will receive approval by the BINS Technical Committee to develop a "procedure" to create a methodology to evaluate transportation corridors. After the development of a corridor evaluation methodology, SourcePoint will seek approval by the JWC.
b. Methodology: SourcePoint will develop a standardized methodology for analyzing transportation corridors within each state.
i. The first part of the methodology consists in the development of a questionnaire to gather information about each border-state's transportation system.
ii. The second part of the methodology consists of gathering, using the developed questionnaire from each border-state. This data will be used as the basis for the analysis of each state's transportation corridors.

Deliverables:

1. BINS Communication Memo \# 1 [FEB 2003]

3. Corridor Data Request. SourcePoint will request data from each border-state that will be used to evaluate the transportation corridors.
a. Quantifiable Corridor Data: This section will gather information that will be use to describe and evaluate the transportation corridors.
b. Socio-Economic Regional Data: This section will gather socio-economic information from each individual border-state and their respective counties. The information includes data on population, employment, trade, regional product, and personal income.
c. Bilingual Data: Questionnaires will be translated into Spanish for the six Spanish speaking states of Mexico
d. Other Data: Any other data requested by SourcePoint

Note: SourcePoint will obtain approval from BINS Technical Committee members on the corridor criteria and corridor evaluation used in the questionnaires.

Deliverables:

2. Survey Completion Memos [FEB 2003]
3. Survey Management Memo \# 1 [MARCH 2003]
4. Corridor Evaluation Database. Prepare a database that will be used to organize and store the data provided by each border-state as part of the Corridor Data Request (Phase I, task 3).
a. Compilation: Data received from the ten border-states will be compiled into a database.
b. Analysis \& Evaluation: Data will be analyzed according to a specific evaluation method and will be used to evaluate transportation corridors for one of the border-states.
5. Other Relevant Tasks. Any task that is related to the development and completion of the BINS study, but that does not fit within the specific set of tasks presented above (i.e. maintain contact with Technical Committee members on a regular basis).

Deliverables:

4. Corridor Survey Instruments [MARCH 2003]
5. Technical Memo \# 3 - Proposed Resolution [MARCH 2003]
6. Phase I Report: Corridor Identification and Evaluation Procedure (with up to date literature review) [MARCH 2003]

PHASE I-A

1. California Database Review. Upon receipt of the California data, SourcePoint will assemble all data covering the California region in its database. This data will be reviewed by the appropriate California agencies and inconsistencies will be resolved.

Deliverables:

7. California Survey Instrument [APRIL 2003]

2. California Corridor Analysis. Conduct analysis of California Transportation Corridors. SourcePoint will use the developed Corridor Evaluation Methodology to identify corridors that serve the binational border within California.
a. Identification: SourcePoint will identify transportation corridors in California.
b. Evaluation: SourcePoint will evaluate the identified transportation corridors using the developed methodology. The results of this evaluation will provide a corridor's list where corridors are listed top to bottom depending on their specific needs (i.e. the corridor listed first in an evaluation of a group of corridors will mean that corridor has the most needs out of that group).
3. California Project Database and Evaluation. SourcePoint will start assembling a list of proposed California corridor-related projects through 2020.

Deliverables:

8. BINS Assessment for California [MAY 2003]
9. Phase IA Report: California-Baja California BINS Report [MAY 2003]

PHASE II

1. Border-States Database Review. SourcePoint will assemble all data covering the remaining border-states in a database. This data will be reviewed by the appropriate state agencies and inconsistencies will be resolved.

Deliverables:

10. Border-States Survey Instruments [JUNE 2003]

2. Border-States Corridor Analysis. Upon review of the data, SourcePoint and the JWC BINS Committee will identify and select transportation corridors that serve the binational border within each individual border-state.
a. Identification: SourcePoint will identify transportation corridors along the border. This identification process will also analyze the relationship between regional demographic trends and the effect of these trends on the selected transportation corridors.
b. Needs Assessment: SourcePoint will perform a Border Analysis Infrastructure Needs Assessment Study for the entire border region. The study identifies the needs and deficiencies of transportation corridors.

Note: SourcePoint will obtain approval from BINS Technical Committee to use a corridor identification "procedure" when selecting border-related transportation corridors with the JWC [July 2003 meeting].

Deliverables:

11. Corridor Evaluation Findings [AUGUST 2003]

3. Border-States Project Database and Evaluation. SourcePoint will assemble a list of proposed border-states corridor-related projects through 2020.
a. Database: The projects will be assembled in Excel database format. The projects will also be assigned to their appropriate corridor by using GIS coordinates.
b. Evaluation: SourcePoint will identify the projects that improve corridor flow. This identification process will analyze projects under construction and planned projects. Example: The project's AADT by segment will be matched to the highway's AADT by segment.

Deliverables:

12. Transportation Projects Findings [AUGUST 2003]
13. Border Infrastructure Needs Assessment [SEPTEMBER 2003]
14. Identify Funding Sources. Explore funding options and innovative financing strategies for each corridor's and their respective transportation projects.
a. Existing Funding Processes: Identify existing funding processes for the financing of proposed projects on the identified corridors.
b. Innovative Funding Processes: Explore alternative innovative funding processes that could be used for the financing of proposed projects on the corridors.

Deliverables:

14. Suggested Legislative Provisions Draft [SEPTEMBER 2003]

5. Recommendation Memo. Draft Corridor Improvements Recommendation Memo including provisions for TEA-21 and reauthorization and Mexican legislation. SourcePoint and the JWC will include discussions on key project elements such as short and long-term priorities, corridors needs, state's binational infrastructure relations, and any other important components of the BINS analysis.

Deliverables:

15. Suggested Legislative Provisions [SEPTEMBER 2003]
16. Submit Phase II Report: Final Report [NOVEMBER 2003]

APPENDIX 4:
 LISTING OF DELIVERABLES

APPENDIX 4: LISTING OF DELIVERABLES

Phase I Deliverables(Completed by MARCH 2003):STATUSLOCATION IN REPORT

1. BINS Communication Memo \# 1
[FEB 2003] [Completed] Appendix 5
2. Survey Completion Memos [FEB 2003]
a. Technical Memo \# 1 [Completed] Appendix 5
b. Technical Memo \#2. [Completed] Appendix 5
3. Survey Management Memo \# 1 [MARCH 2003]. [Completed] Appendix 5
4. Corridor Survey Instruments
[MARCH 2003].

\qquad
[Completed] Appendix 7
5. Technical Memo \# 3-Proposed Resolution [MARCH 2003]. [Completed] Appendix 5
6. Phase I Report [MARCH 2003].

\qquad
[Completed]
Phase IA Deliverables (Completed by MAY 2003):
7. California Survey Instrument
[APRIL 2003] .. [Completed] Appendix 7
8. BINS Assessment for California [MAY 2003]

\qquad
[Completed]

\qquad
Chapters 4 \& 5
9. California-Baja California BINS Report [MAY 2003]

\qquad
[Completed]

\qquad
California Report
Phase II Deliverables (Completed by NOVEMBER 2003): .
10. Border-States Survey Instrument [JUNE 2003]. [Completed] Chapter 7
11. Corridor Evaluation Findings[AUGUST 2003].
\qquad[Completed]
\qquad Chapter 4
12. Transportation Projects Findings
\qquad
13. Border Infrastructure Needs Assessment [SEPTEMBER 2003]. \qquad [Completed]

Chapter 2
14. Suggested Legislative Provisions Draft [SEPTEMBER 2003]. \qquad [Completed]. Chapter 8
15. Suggested Legislative Provisions [SEPTEMBER 2003]. \qquad [Completed] Chapter 8
16. Phase II Final Report [NOVEMBER 2003]. \qquad [Completed]. \qquad Final Report

APPENDIX 5:
FORMAL COMMUNICATIONS

APPENDIX 5: FORMAL COMMUNICATIONS

TECHNICAL MEMORANDA

BINS Communication Memorandum \#1 [English] February 21, 2002
Technical Memorandum \#1 [English \& Spanish] Transportation Corridor Evaluation Criteria February 21, 2002
Technical Memorandum \#2 [English \& Spanish]Request for Corridor Data and Meeting NoticeMarch 07, 2003
Survey Management Memorandum \# 1 [English \& Spanish] Update on Telephone Survey April 04, 2003
Technical Memorandum \#3 and \#4 [English]
Proposed Resolutions April 25, 2003
Transportation Project Memorandum [English \& Spanish] Request for Transportation Project Data May 01, 2003
Survey Management Memorandum \#2 [English]
Questionnaire Completion May 08, 2003
OTHER ELECTRONIC COMMUNICATION
Confirmation of Corridor Evaluations
Arizona June 02, 2003
Baja California June 16, 2003
California May 20, 2003
Chihuahua June 17, 2003
Coahuila June 17, 2003
New Mexico June 03, 2003
Nuevo León June 17, 2003
Sonora June 17, 2003
Tamaulipas June 12, 2003
Texas June 24, 2003
Technical Committee Meeting Notices April 23, 2003.May 13, 2003June 09, 2003
Review and Comments on Reports December 5, 2003December 22, 2003
January 9, 2004January 15, 2004

Other data requests such as additional transportation project data in August 2003

RESOLUTIONS

Proposed Resolutions/Resoluciones Propuestas
Proposed Resolutions and Discussion

TECHNICAL MEMORANDA

February 21, 2003

To: Technical Committee Members

From: Marney Cox, SourcePoint, BINS Project Manager

Subject: BINS Communication Memorandum \#1
SourcePoint continues to progress on the Bi-National Border Transportation Infrastructure Needs Assessment Study [BINS] and this e-mail provides you with information about the project and our progress. Attached to this e-mail is a copy of the "Minutes" from the November 19, 2002 Technical Committee meeting held in San Diego.

Project Review and Future Schedule:

November 19, 2002 - The first Technical Committee meeting is convened for BINS. The major outcome from this meeting - the Technical Committee approved a procedure to develop a methodology to evaluate transportation corridors. The Committee recommends that SourcePoint send recommended corridor criteria to the Technical Committee for review and approval. Details of the meeting and the resolution are contained in the attached file titled BTCM 11-19-02.doc.

December 13, 2002 - Marney Cox delivers a presentation on the status of the BINS study to the US-Mexico Joint Working Committee [JWVC] on Transportation Planning \& Programming. The JWC approves the BINS Technical Committee recommendations from the November 19 meeting; authorized SourcePoint to proceed with the study; and encouraged full and timely Technical Committee participation. At the JWC meeting, the following dates were set as benchmarks for the BINS project:

- February 2003 - Selection of the Corridor Criteria
- March 2003 - Completion of the Data Collection
- April 2003 - BINS Technical Committee Meeting to Review the Collected Data
- June 2003 - JWC in conjunction with SourcePoint Selects the Corridors
- August 2003 - SourcePoint completes a Draft Version of the Final Report
- October 2003 - SourcePoint provides the JWC the Final Report

Proposed April Meeting Date

The purpose of this meeting is to review the criteria, and to review and verify the data collected. Please select a date in April [from the list below] that is your preference for the next BINS Technical Committee meeting to be held in San Diego. Please send your selection to Michael Williams [Telephone 16195955646 or e-mail at mwi@sourcepoint.org] by February 28, 2003.

Proposed Meeting dates for the BINS Technical Committee Meeting to Review the Collected data

1. Tuesday, April 8, 2003 in San Diego
2. Wednesday, April 16, 2003 in San Diego
3. Thursday, April 24, 2003 in San Diego

To: BINS Technical Committee Members

From: Marney Cox, SourcePoint

Subject: Technical Memorandum \#1

Comments Requested on the Transportation Corridor Evaluation Criteria

Our Request

Please review the five survey questionnaires attached to this e-mail. The survey questionnaires are designed to gather data on the criteria that we propose to use to evaluate and identify each state's major transportation corridor. Please evaluate the criteria in the questionnaires, and let Michael Williams know by February 28, 2003, if you approve of the proposed criteria. Should you have any questions, please contact Michael Williams at SourcePoint [Telephone 16195955646 or e-mail at mwi@sourcepoint.org].

Background Discussion

At the Technical Committee meeting held on November 19, 2002 in San Diego, the BINS Technical Committee requested that SourcePoint research studies that use quantifiable criteria to evaluate major transportation corridors, identify common criteria used by the studies, and present these criteria to the Technical Committee. This Technical Memo is the response to the Technical Committee request.

Identifying Studies and Common Criteria

In selecting criteria to define a corridor, numerous studies were examined including the following:

- "Western Transportation Trade Network", 1999 - articulated the idea that corridors are multimodal; the volume and value of goods transported by truck, rail, air and ship are important indicators of corridor size; border crossings are vital; and Average Annual Daily Traffic [AADT] is a good measure of road use. This study also suggests using long run projections as a way of evaluating how traffic flows will evolve over time.
- "Latin America Trade and Transportation Study", March 2001 - stated that the volume and value of goods transported by truck, rail, air and ship are important indicators of corridor size; a corridor is multi-modal; channel depth at maritime ports and runway length at airports are good indicators of transport capacity; and suggested using long run projections as a way of evaluating the manner in which traffic flows will evolve over time.
- "The National Highway Program" by the Mexican Secretariat of Communication \& Transportation - this study uses measures for highway utilization similar to AADT.

Based on our research findings, a major transportation corridor is defined as: A combination of modes that move people, vehicles and goods from one location to another. A transportation
corridor is not just one road or rail line, but a combination of modes. Corridors may include airports, maritime ports and multi-modal facilities.

SourcePoint has identified a draft set of evaluation criteria. The proposed criteria, shown in the attached questionnaires, could be used to perform a systematic evaluation of your state's transportation corridors. The criteria have been categorized into two broad areas - Minimum Criteria and Quantifiable Criteria.

Minimum Criteria

The focus of the BINS study is the geographical area surrounding the US-Mexico border and the movement of goods and people across the border. Therefore, the study focuses on those transportation corridors that are within 100 kilometers of the US-Mexico border and serve an international Port of Entry [POE]. Questions addressing these two topics are called "Minimum Criteria."

Quantifiable Criteria

The criteria requested in this category are facility specific and grouped by modes and include Highways, Airports, Railroads and Maritime Ports. To take into account the change of the corridors over time, we request data for one historical year [calendar year 2000] and one future year [calendar year 2020] to determine how the corridors are expected to evolve. The specific data requested is listed below by mode.

A. Highways

1. Average Annual Daily Traffic [AADT], Level of Service, Peak Hour Traffic Volume and Peak Hour Carrying Capacity
2. The number of trucks crossing the border
3. The volume \& value of goods carried by trucks crossing the border
4. The number of passenger vehicles and buses crossing the border

B Airports

1. Runway length
2. The volume $\&$ value of goods transported by airplanes

C. Railroads

1. The number of rail cars crossing the border
2. The volume \& value of goods transported by rail cars
D. Maritime Ports
3. Channel Depth
4. The volume \& value of goods transported by ship that use the port

Para: Miembros del Comité Técnico

De: Marney Cox [SourcePoint]

Sujeto: Memorándum Técnico \# 1 Solicitud de Comentarios Acerca de los Criterios de Evaluación de Corredores de Transporte

Nuestro Pedido

Les agradecemos revisen los cinco cuestionarios anexados a este correo electrónico. Los cuestionarios se han diseñado con el fin de reunir datos sobre los criterios que hemos propuesto usar para evaluar e identificar los principales corredores de transporte de cada estado. Por favor evalúe los criterios solicitados en los cuestionarios, y comuníquese con Santiago Dávila, antes del 28 de Febrero del 2003, para informarle si usted aprueba los criterios. Para cualquier aclaración en español, comuníquese por favor con Santiago Dávila a SourcePoint [Teléfono 16195955635 o por correo electrónico a sda@sourcepoint.org].

Antecedentes

En la reunión del Comité Técnico llevada a cabo el19 de noviembre de 2002 en San Diego, el Comité Técnico BINS recomendó que SourcePoint, identificara los estudios que usan criterios cuantificables para evaluar corredores, que encontrara los criterios comunes usados por los estudios para analizar corredores, y presentara estos criterios al Comité Técnico. Este es el Memorándum solicitado por el Comité Técnico.

Identificando Estudios y Criterios Comunes

Al escoger los criterios y al definir los corredores, numerosos estudios se examinaron:

- "La Red Occidental del Comercio del Transporte", 1999 - Articuló la idea que los corredores son multi-modales; el volumen y el valor de bienes transportados por camión, ferrocarril, avión y barco son indicadores importantes del tamaño del corredor; los cruces fronterizos son esenciales; y el Aforo Promedio [AADT, por sus siglas en inglés] es un buen indicador del uso de la carretera. Este estudio sugiere también usar proyecciones a futuro como una manera de evaluar cómo flujos de tráfico crecerán con el tiempo.
- "Estudio Latino Americano de Comercio y Transporte", Marzo del 2001 - Expresó que el volumen y el valor de bienes transportados por camión, ferrocarril, avión y barco son indicadores importantes del tamaño del corredor; un corredor es multi modal; la profundidad del canal de puertos marítimos y la longitud de la pista de aterrizaje en aeropuertos son indicadores buenos de la capacidad de transporte; y también sugirió usar las futuras proyecciones como una manera de evaluar la manera en que los flujos de trafico evolucionarán con el tiempo.
- "El Programa Nacional de Carreteras" por la Secretaría de Comunicación y Transporte de México- este estudio usa medidas similares para la utilización de carreteras al AADT, usado en Estados Unidos.

Basado en nuestras conclusiones de investigación, un corredor de transporte principal se define como: Una combinación de modos de transporte que transportan a gente, vehículos y bienes de un lugar a otro. Un corredor de transporte no es solo una carretera o una línea de ferrocarril, sino una combinación de modos. Los corredores pueden incluir aeropuertos, puertos marítimos e instalaciones multi-modales.

SourcePoint ha propuesto un grupo de criterios de evaluación. Los criterios anexados a este correo electrónico se usarán para realizar una evaluación sistemática de los corredores en su estado usando datos cuantificables. La justificación para los criterios se puede clasificar en dos partes - los criterios mínimos y la información específica de cada instalación. Cada uno será revisado a continuación.

El Criterio Mínimo

El foco del estudio BINS es el área geográfica que rodea la frontera de México-US y el movimiento de bienes y gente a través de la frontera. Por lo tanto, el estudio se enfoca en esos corredores de transporte que están dentro de los 100 kilómetros de la frontera de México-US y que prestan servicio a un Cruce Fronterizo Internacional. Las preguntas en el cuestionario relacionadas con estos dos temas se llaman "los Criterios Mínimos".

Datos Específicos de las Instalaciones

Los datos solicitados en esta categoría se refieren a "los Criterios Cuantificables" en los cuestionarios. Los criterios son agrupados por modos e incluyen Carreteras, Aeropuertos, Ferrocarriles y Puertos Marítimos. Para tener en cuenta el cambio de los corredores con el tiempo, solicitamos los datos para un año histórico [año calendario 2000] y un año futuro [año calendario 2020] para determinar cómo se anticipa que los corredores van a evolucionar.

A. Carreteras

1 Aforo Promedio [AADT, por sus siglas en inglés], Nivel de Servicio, Volumen de Tráfico de la Hora Pico y Capacidad de la carretera en la Hora Pico
2 El número de camiones que cruza la frontera
3 El volumen y el valor de bienes transportados por camiones que cruzan la frontera
4 El numero de vehículos de pasajeros y autobuses que cruza la frontera

B. Aeropuertos

1. Longitud de la pista de aterrizaje
2. El volumen y el valor de bienes transportados por aviones

C. Ferrocarriles

1. El numero de vagones de tren que cruzan la frontera
2. El volumen y el valor de bienes transportados por vagones de tren

D. Puertos Marítimos

1. Profundidad del canal
2. El volumen y el valor de bienes transportados por barcos que utilizan el puerto marítimo

To: BINS Technical Committee Members
From: Marney Cox, SourcePoint

Subject: Technical Memorandum \#2

Request for Corridor Data and Meeting Notice

Thank you for your comments on the criteria and questions that we mailed you two weeks ago. We have used your input to revise the questionnaires and they are attached to this note.

Our Request

Please complete the five survey questionnaires attached to this e-mail. The survey questionnaires are designed to gather data on the criteria that we propose to use to evaluate and identify each state's major transportation corridors.

Please complete the questionnaires by April 4, 2003, and e-mail them to Michael Williams at mwi@sourcepoint.org]. Should you have any questions, please contact Michael Williams at SourcePoint [Telephone 1619595 5646]

The Next Technical Committee Meeting

The next Technical Committee meeting is scheduled for Friday, April 25, 2003 from 11:30 AM to 5:00 PM in San Diego. The meeting will be held at 401 B Street, Suite 800, in Conference Room A and lunch will be served while the meeting is in progress. The purpose of this meeting is to review the criteria and the data collected from the questionnaires. Thus, it is important that the questionnaires be returned to SourcePoint in a timely fashion. Also, during this meeting we propose that the Technical Committee take action to recommend the criteria for approval by the Joint Working Committee.

Changes to the Survey Instrument

Changes are grouped into three broad categories:

1 Criteria

All the criteria that were in the questionnaires were acceptable to members of the Technical Committee. There was one suggestion to add a criterion - the number of pedestrians crossing at the land ports of entry. The questionnaire has been altered; the criterion has been added and is question \#11 in the POE questionnaire.

2 Questionnaires

There are two changes of substance:
A. Highways can be divided among corridors. In the event that a highway is part of more than one corridor, it is up to each State to specify the segments in each highway that resides in each corridor. The State decides at which segment the change occurs. An example of this can be viewed in the Example tab in Highways Questionnaire where Interstate-8 is divided between Corridor A and Corridor B, and in the Example tab in the Corridors Questionnaire.
B. Highway Intermodal facilities. The highway questionnaire will contain a question to determine if the highway is served by a rail line.

3 Wording and Instructions

Several items were suggested for clarification and they are the following:
A. It is up to each State to specify the transportation corridors in its state.
B. All the data requested have to be input into the spreadsheet, and the spreadsheet has to be e-mailed to Michael Williams
C. In the highways questionnaire, the peak period refers to both the morning and afternoon peak periods [am/pm peak].

```
Para: Miembros del Comité Técnico
De: Marney Cox [SourcePoint]
Sujeto: Memorándum Técnico #2
    Solicitud de Información de Corredores y Fecha de Reunión
```

Gracias por sus comentarios sobre los criterios y preguntas que le enviamos hace dos semanas, los cuales hemos utilizado para revisar el cuestionario y los hemos incorporado en esta nota.

Nuestra Solicitud

Les agradecemos completar los cinco cuestionarios anexos a este correo electrónico. Los cuestionarios se han diseñado con el fin de reunir datos sobre los criterios que proponemos usar para evaluar e identificar los principales corredores de transporte de cada estado.

Por favor complete los cuestionarios antes del 7 de abril del 2003, y envíelos a Michael Williams [mwi@sourcepoint.org]. Si requiere ayuda en español, comuníquese por favor con Santiago Dávila a SourcePoint, Teléfono (619) 595 5635]

La Próxima Reunión del Comité Técnico

La próxima reunión del Comité Técnico fue programada para el Viernes, 25 de abril del 2003 de 11:30 AM a 5 PM en San Diego. La dirección de la reunión es 401 Calle B, suite 800, en el Salón de Conferencias A (será proporcionado un almuerzo ligero). El propósito de la reunión es revisar los criterios y la información recabada de los cuestionarios. Por tal razón, es importante que éstos sean completados y enviados a SourcePoint a tiempo. Durante esta reunión, también esperamos que el Comité Técnico tome acción para recomendar los criterios para la aprobación por parte del Comité Conjunto de Trabajo.

Cambios para el Cuestionario

Los cambios están agrupados en tres categorías:

1 Criterio

Todos los criterios propuestos en el cuestionario fueron aceptados por los miembros del Comité Técnico. Hubo la sugerencia de añadir un criterio, el número de personas que cruzan por los cruces fronterizos. Por ello el cuestionario ha sido modificado y el nuevo criterio ha sido añadido en la pregunta \# 11 del cuestionario de CF.

2 Cuestionarios

Hay dos cambios substanciales:

A Carreteras pueden ser agrupadas en corredores. En el caso de que una carretera sea parte de más de un corredor, es decisión del estado especificar el segmento de cada carretera que reside en cada corredor. El estado decide en qué segmento el cambio de corredores ocurre. Usted puede revisar un ejemplo de este caso en la cejilla de "Ejemplo" en el Cuestionario de Carreteras donde la carretera interestatal-8 está incluida en el corredor A y el corredor B, además de estar en la cejilla de "Ejemplo" del Cuestionario de Corredores.

B Instalaciones Inter modales de Carreteras. El cuestionario de carreteras contendrá una pregunta para determinar si la carretera se conecta con alguna línea de ferrocarril.

3 Fraseo e Instrucciones

Varios puntos fueron sugeridos para clarificación y estos son los siguientes:

A Cada estado especificará los corredores de transporte en su entidad.

B Toda la información tiene que ser incorporada en hoja electrónica y ésta tiene que ser enviada por correo electrónico a Michael Williams.

C En el cuestionario de carreteras, la hora pico se refiere a la mañana y la tarde [hora pico AM/PM].

April 4, 2003
To: \quad Technical Committee Members
From: Marney Cox, SourcePoint
Subject: Survey Management Memorandum \# 1 - Update on Telephone Survey

The purpose of this memorandum is to update the BINS Technical Committee on the survey review process.

Review Survey Process:

The criteria and draft survey were emailed to the Technical Committee on February 21, 2003. During the following week the Technical Committee members were contacted by telephone and their suggestions on the survey were obtained in a telephone interview. These suggestions were incorporated into the revised survey. The main points from those interviews are contained in the table below.

Contact Information and Comments on Corridor Evaluation Criteria Survey:

State \& Country	Contact Name	Telephone Number	E-mail Address	```Feedback (Major points listed, for more detail contact SourcePoint)```
California (US)	Sergio Pallares	1-619 6883136	sergio.pallares@dot.ca.gov	-Feels optimistic about completing data -Difficulty with forecast data -Need various sources of data
Arizona (US)	Arnold Burnham	1-602 7128591	aburnham@dot.state.az.us	-Feels optimistic about completing data -Difficulty with forecast data -No Maritime Ports
Texas (US)	Mary Deleon	1-512 4865017	mdeleon@dot.state.tx.us	-Hopes to have data in two weeks -Confusion over corridor definition
New Mexico (US)	Adrian Apodaca	1-505 5230615	adrian.apodaca@nmshtd.state.n m.us	-Issues with getting data from correct sources -No Maritime Ports -One month should be fine
Tamaulipas (MEX)	Ernesto Morris Delgado	52-8343189550	dgicico@tamaulipas.gob.mx	-Money issues for attending meeting -Difficulty to obtain some data
Nuevo Leon (MEX)	Evaristo Gaytan	52-8183440550	scaminosnl@infosel.net.mx	-No Maritime Ports -Should be translated into Spanish -Understands role of his state
Coahuila (MEX)	Noe Garcia Riojas	52-8444155221	gario@prodigy.net.mx	-Mentioned the trans. Texas corridor and the Ports to Plains Corridor studies
Chihuahua (MEX)	Joaquin Barrios	52-6144181816	jbarrios@buzon.chihuahua. gob.mx	-No Maritime Ports -Should be translated into Spanish
Sonora (MEX)	Hector Garcia	52-6622131900	hgarcia@rtn.uson.mx	-Should be translated into Spanish -Difficulty obtaining data
Baja California (MEX)	Carlos Lopez	52-6865581062	clopez@baja.gob.mx	-Feels optimistic about obtaining data

April 4, 2003
To: Technical Committee Members
From: Marney Cox, SourcePoint
Subject: Memorándum de Administración de los Cuestionarios \# 1 - Llamada Telefónica
El propósito de este memorándum es informar al Comité Técnico de BINS del proceso de revisar los cuestionarios.

Proceso de Revisar los Cuestionarios:

El criterio y el borrador de los cuestionarios fueron enviados por correo electrónico al Comité Técnico el 21 de febrero, 2003. Durante la siguiente semana los miembros del Comité Técnico fueron contactados por teléfono y sus sugerencias para los cuestionarios fueron obtenidas durante una entrevista por teléfono. Las sugerencias fueron incorporadas en los cuestionarios revisados. Los temas más importantes de estas entrevistas están incluidos en la siguiente tabla.

Información de Contacto y Sugerencias a los Criterios de Evaluación de Corredores:

Estado y País	Nombre del Contacto	Numero de Teléfono	Dirección de Correo Electrónico	Sugerencias (Puntos mas importantes, para más detalle contactar a SourcePoint)			
California (US)	Sergio Pallares	$1-6196883136$	sergio.pallares@dot.ca.gov	-Se siente optimista para completar la información. -Dificultad con los pronósticos -Necesitara varias fuentes de atos			
Arizona (US)	Arnold Burnham	$1-6027128591$	aburnham@dot.state.az.us	-Se siente optimista para completar la información. -Dificultad con los pronósticos			
-No hay puertos marítimos					$	$	-Quiere tener la infamación en
:---							
los semanas							

Sonora MEX)	Hector Garcia	$52-6622131900$	hgarcia@rtn.uson.mx	-Mejor si se traduce a español -Dificultad adquiriendo la información
Baja California (MEX)	Carlos Lopez	$52-6865581062$	clopez@baja.gob.mx	-e siente optimista para completar la información.

To:	Technical Committee Members
From:	Marney Cox, SourcePoint
Subject:	Technical Memorandum \#3 \& \#4 - Proposed Resolutions

BACKGROUND

The BINS project is in the latter stages of Phase I [see attached Framework]. At this point the Technical Committee has reviewed the list of criteria and suggested modifications. The suggested modifications have been implemented and the revised questionnaires were sent to the Technical Committee between March 7 and March 12. As of April 19, the 10 Border States along the USMexico border have returned $\mathbf{X X \%}$ of the questionnaires to SourcePoint [see attached Questionnaire Response]. At this time we request the Technical Committee formally approve the corridor criteria used for the study.

Specifying criteria and obtaining data are steps towards conducting a corridor analysis. The most important step is the method by which the data are analyzed and combined to rank the corridors and an example is attached [see Example Corridor Evaluation]. At this time we request the Technical Committee formally approve the corridor Evaluation Methodology used for the study.

RESOLUTIONS

Proposed Resolution For Joint Working Committee

The BINS Technical Committee approves the following resolutions to be recommended to the USMexico Joint Working Group on Binational Border Transportation and Planning.

Proposed Resolution \#1 - Border Corridor Evaluation Methodology

The BINS Technical Committee approves an 11 step procedure to evaluate border transportation corridors within each state.

Proposed Resolution \#2 - Border Corridor Selection Criteria

The BINS Technical Committee approves the criteria to be used in the 11 step methodology to evaluate border transportation corridors within each state.

DISCUSSION

Border Corridor Evaluation Methodology

Step 1: Only use facilities that meet minimum criteria [(a) Be within 100 km of US-Mexico border; (b) for highways and railroads - serve an international POE; (c) for airports and maritime ports - they must be designated as an international port of entry [POE].

Step 2: Divide the data by mode [highway, land POE, airport, maritime port, and railroad]
For Steps 3 through 8, one set of computations uses the data for calendar year 2000, and a second set of computations uses the 2020 projections. These computations are the following:

Step 3: For highways, compile the criteria by corridor. If there is more than one highway in a corridor, the highway data for each highway needs to be summed to obtain the corridor total. The Average Annual Daily Traffic [AADT] for each corridor and for all corridors needs to be computed as well as the relative share of AADT amongst the corridors.

Step 4: For railroads, compile the data by corridor.
Step 5: For land POE, compile the data for all land POE. For example, the number of trucks crossing at each POE must be aggregated to obtain the total truck crossings for all land POE.

Step 6: For airports, compile the data for all airports. For example, the imports at each airport must be summed to obtain total imports at all airports.

Step 7: For maritime ports, compile the data for all maritime ports. For example, the imports at each maritime port must be summed to obtain total imports at all maritime ports.

Step 8: Distribute the land POE, airport and maritime port data amongst the corridors based on the distribution of AADT amongst the corridors.

Step 9: Calculate the percent change for each corridor mode from 2000 to 2020.

The Listing

Step 10: Utilize corridor data for calendar year 2000 and the percent change for 2000 to 2020. For each item, sort the corridor totals from highest score to lowest score. If there are three corridors, the highest score is 1 and the lowest score is 3 .

Step 11: Sum the scores for each mode. The corridor with the lowest score is listed 1st, while the corridor with the highest score is listed 3rd or last [assumes three corridors].

BORDER CORRIDOR SELECTION CRITERIA

Minimum Criteria

- That all facilities lie within 100 km of the US-Mexico border
- That highways and railroads serve an international Port of Entry [POE]; that airports and maritime ports be designated as international POE.

Quantifiable Criteria - to be gathered for calendar year 2000 and a forecast for 2020

- For Highways - the beginning \& ending segment markers, and the following data by segment: average annual daily traffic, level of service, traffic capacity at peak hours, traffic volume at peak hours, and the corridor in which each segment resides.
- For Land Ports of Entry - the number of trucks, buses, passenger vehicles, rail cars and pedestrians crossing the border, and the volume and value of goods crossing the border by rail and by truck.
- For Airports - the total volume and total value of goods being exported and imported at the airport; the Mexican volume and Mexican value of goods being exported and imported at the airport; and the runway length for each runway at the airport.
- For Maritime Ports - the total volume and total value of goods being exported and imported at the maritime port; the Mexican volume and Mexican value of goods being exported and imported at the maritime port; and the channel depth of the main channel at the port.
- For Railroads - the location of Intermodal facilities and the corridor in which the rail lines reside.

May 1, 2003

To: Technical Committee Members

From: Marney Cox [SourcePoint]

Subject: Transportation Project Memorandum Request for Transportation Project Data

As part of the Bi-National Border Transportation Infrastructure Needs Assessment study [BINS], we are requesting information on transportation projects in your state.

Attached is an Excel spreadsheet with the format for submitting the project data to us. Please send a list of all transportation related projects in your state that are within 100 km of the US-Mexico border by May 30, 2003. Please send the spreadsheet to Michael Williams [mwi@sourcepoint.org] and include the following items for each project:

1. The name or ID of the project
2. Your State ID [AZ = Arizona, $C A=$ California, etc.]
3. The County in which the project resides
4. The project mode [highway, airport, maritime, railroad]
5. A brief description of the project [road widening from 4 to 6 lanes, etc.]
6. The year the project begins
7. The year the project is scheduled to be completed.
8. For highway projects provide the following additional data:
a. The highway on which the project resides
b. Beginning milepost number of the segment on the highway where the project will be implemented
c. Ending milepost number of the segment on the highway where the project will be implemented
d. The Level of Service for the segment before the project begins
e. The Level of Service for the segment after the project is completed
f. The traffic capacity of the segment during peak afternoon/evening hours [PM] before the project begins
g. The traffic capacity of the segment during peak afternoon/evening hours [PM] after the project is completed
h. The projected traffic volume on the segment during peak afternoon/evening hours [PM] before the project begins
i. The projected traffic volume on the segment during peak afternoon/evening hours [PM] after the project is completed
9. The cost of the project in "constant" dollars [suggest 2003 dollars].
10. The "year" used as the base year for estimating constant dollars [2003].
11. The Geographical Information System [GIS] data. Please include the following items:
a. The project's GIS coordinates
b. Date of the data - the month and year the data were created
c. Source of the data - A regional report or aerial photography, for example.
d. Data resolution - a reliability factor such as +or - 30 feet, or digitized off map
e. Coordinate / Projection system - the system used in your state such as the California State Coordinate System or UTM.
f. Description of attributes - a description of the terms for each variable in the data base, for example, mode the type of transportation system
g. Documentation of valid values for each attribute - if there are values associated with mode, please specify. For example, 1 = highway, 2 = airport, etc.
h. Data limitations - deals with the accuracy of the data as well as proprietary rights issues.

Please contact Michael Williams at SourcePoint if you have any questions [Tel: 1619595 5646, Email: mwi@sourcepoint.org].

Para: Miembros del Comité Técnico
De: Marney Cox [SourcePoint]

Sujeto: Memorándum de Proyectos de Transportación Solicitación de Información sobre Proyectos de Transporte

Como parte del estudio de Evaluación de Necesidades de Infraestructura de Transporte Fronterizo [BINS, por sus siglas en inglés], le solicitamos información acerca de proyectos de transporte en su estado.

Anexado es un documento Excel para proporcionar la información de los proyectos requeridos. Por favor prepare una lista, antes del 31 de Mayo del 2003, de todos los proyectos de transporte en su estado que estén dentro de los 100 Km . de la frontera México-US. Por favor envíe el documento a Santiago Dávila [sda@sourcepoint.org] e incluya la siguiente información para cada proyecto:

1 El nombre e identificación del proyecto.
2 Su estado [BC = Baja California, MEX, etc.]
3 El municipio donde el proyecto está ubicado.
4 El tipo de proyecto [carretera, aeropuerto, puerto marítimo, ferrocarril]
5 Breve descripción del proyecto [ejemplo: ampliación a 4 carriles, etc.]
6 El año comienzote iniciación del proyecto.
7 El año planeado para la terminación del proyecto.
8 Para proyectos de carretera, enviar la siguiente información adicional:
a. La carretera en que la que el proyecto se implementará.
b. El Km. inicial del segmento donde el proyecto será implementado.
c. El Km. final del segmento donde el proyecto será implementado.
d. El nivel del servicio para el segmento antes del inicio del proyecto.
e. El nivel del servicio para el segmento después de que el proyecto sea terminado.
f. La capacidad de tráfico del segmento durante la hora pico de la tarde antes del inicio del proyecto.
g. La capacidad de tráfico del segmento durante la hora pico de la tarde después de que el proyecto sea terminado.
h. El volumen de tráfico pronosticado del segmento durante la hora pico de la tarde antes del inicio del proyecto.
i. El volumen de tráfico pronosticado del segmento durante la hora pico de la tarde después de que el proyecto sea terminado.
9 El costo del proyecto en pesos "constantes" [sugerimos pesos del 2003].
10 El año utilizado como el año base para la estimación del peso "constante" [2003]
11 La información de datos con relación al Sistema de Información Geográfica [GIS, por sus siglas en inglés]. Por favor incluir la siguiente información:
a. Las coordenadas en GIS del proyecto.
b. La fecha de la información - el mes y año en que la información fue creada.
c. El origen de la información - Un reporte regional o fotografía aérea, por ejemplo.
d. La resolución de la información - un factor de certeza de + a - 30 pies, o un mapa digitalizado.
e. El sistema de coordenadas y proyecciones - el sistema usado en su estado. Por ejemplo, el Sistema de Coordenadas y Proyecciones de California o el UTM.
f. Una descripción de los atributos - una descripción de los términos para cada variable en el banco de datos, por ejemplo, el modo del sistema de transportación.
g. La documentación de valores válidos para cada atributo - si hay valores asociados con los módulos, por favor especifique. Por ejemplo, 1 = carretera, 2 = aeropuerto, etc.
h. Limitaciones de la información - por ejemplo: certeza de los datos proporcionados así como los derechos propietarios.

Por favor contactar a Santiago Dávila a SourcePoint para cualquier aclaración [Tel: 1619595 5635, E-mail: sda@sourcepoint.org].

To: Technical Committee Members
From: Marney Cox, SourcePoint
Subject: Survey Management Memorandum \# 2 - Questionnaire Completion

The purpose of this memorandum is to update the BINS Technical Committee on the questionnaire completion. The previous Survey Management Memorandum (\# 1) outlined the criteria review process.

Questionnaire Completion

The BINS questionnaires were distributed to the four US states on March $4^{\text {th }}$ and the six Mexican states on March $7^{\text {th }}$. Completion of the questionnaires did not go as smoothly as hoped. Two Mexican States (Sonora and Coahuila) did not provide any information, while Chihuahua, Nuevo Leon and Tamaulipas completed parts of the questionnaires. Our data collection results are presented on Table 1.

Process for States that Did Not Provide Data

As shown in Table 1, we did NOT receive questionnaires from all states. Consequently, we are implementing an alternative evaluation process for those states that did not provide questionnaires to SourcePoint.

- The Evaluation Process:

The basic methodology will be the same as that used for states that provided questionnaires; however, there will be some changes to account for differences in data. Where states have omitted certain questionnaires, we will obtain the data using other sources. The number of indicators used in the corridor evaluation will be less than the number of indicators used for those states that provided a complete set of data. The difference in the number of indicators will not make the evaluation of a state's corridors less significant than those evaluations with more indicators. A corridor that contains more indicators has added characteristics that help understand specific qualities of that corridor. A corridor with fewer indicators can still be evaluated, yet it will lack some of those added characteristics.

The alternative sources for the missing data are the following:

- Base Year Data - Calendar Year 2000

Highways: SourcePoint will obtain highway data from the Mexican Secretariat of Communications and Transportation [SCT]. SCT will provide segment data for federal highways located in those Mexican states that did not provide highway data to SourcePoint. This highway information contains segment length [kilometers - km] and Trafico Diario Promedio Annual [TDPA - a measure similar to average annual daily traffic] for each segment.

Land POE: For trucks and rail, the value of exports going south into Mexico [from the United States] will come from the United States Bureau of Transportation Statistics [BTS].

- Forecast Data - Year 2020:

The forecast data for highways and land POE will be derived using a percentage growth of 3.0% provided by the SCT.

Project Schedule

SourcePoint will complete the corridor evaluations by mid June, 2003.

Table 1. Results of Data Collection Efforts						
	Arizona	California	New Mexico	Texas		
United States						
Part 1-Highways	X	X	X	X		
Part 2 - POE	X	X	X	X		
Part 3 - Airports	X	X	X	X		
Part 4-Maritime	X	X	X	X		
Part 5 - Corridors	X	X	X	X		
	Baja	Chihuahua	Coahuila	Nuevo Leon	Sonora	Tamaulipas
Mexico						
Part 1 - Highways	X	X		X		X
Part 2 - POE	X	X				X
Part 3 - Airports	X	X		X		X
Part 4-Maritime	X					X
Part 5 - Corridors	X					
	United States Totals		Mexican Totals		All States	
Part 1 - Highways	4	20\%	4	13\%	8	16\%
Part 2-POE	4	20\%	3	10\%	7	14\%
Part 3 - Airports	4	20\%	4	13\%	8	16\%
Part 4-Maritime	4	20\%	2	7\%	6	12\%
Part 5 - Corridors	4	20\%	1	3\%	5	10\%
Questionnaires Received	20	100\%	14	47\%	34	68\%
Total Questionnaires	20		30		50	

OTHER ELECTRONIC COMMUNICATION

Confirmation of Corridor Evaluations:

Arizona...................June 2, 2003
Baja CaliforniaJune 16, 2003
CaliforniaMay 20, 2003
Chihuahua..............June 17, 2003
Coahuila.................June 17, 2003
New MexicoJune 3, 2003
Nuevo León............June 17, 2003
Sonora....................June 17, 2003
Tamaulipas.............June 12, 2003
Texas.......................June 24, 2003
Notices of Technical Committee Meetings

April 23, 2003
May 13, 2003
June 9, 2003
November 14, 2003

Review and Comments on Reports

December 5, 2003
December 22, 2003
January 9, 2004
January 15, 2004

CONFIRMATION OF CORRIDOR EVALUATIONS

Arizona: Confirmation of Corridor Evaluation [6/02/03]

Arnold -
This note represents formal confirmation that you have approved the Final Version of the Arizona Corridor Evaluation conducted under the Bi-National Border Transportation Infrastructure Needs Assessment Study [BINS] and performed by SourcePoint.

The Final Version of the Corridor Evaluation was sent to you on May 20, 2003.
Oral confirmation was obtained from you during a telephone conversation we had on June 2, 2003.
With best regards,

Michael D. Williams

Senior Economist
SourcePoint
Telephone: 16195955646
Internet: mwi@sourcepoint.org

Baja California: Confirmation of Corridor Evaluation [6/16/03]

Carlos -

This note represents formal confirmation that you have approved the Final Version of the Baja California Corridor Evaluation conducted under the Bi-National Border Transportation Infrastructure Needs Assessment Study [BINS] and performed by SourcePoint.

The Final Version of the Corridor Evaluation was sent to you on May 22, 2003.

Oral confirmation was obtained from you during the BINS Technical Committee meeting that was conducted on June 13, 2003.

With best regards,

Michael D. Williams

Senior Economist
SourcePoint
Telephone: 16195955646
Internet: mwi@sourcepoint.org

California: Confirmation of Corridor Evaluation [5/20/03]

Mark \& Sergio -
This note represents formal confirmation that you have approved the Final Version of the California Corridor Evaluation conducted under the Bi-National Border Transportation Infrastructure Needs Assessment Study [BINS] and performed by SourcePoint.

The Final Version of the Corridor Evaluation was sent to you on May 20, 2003.
Oral confirmation was obtained from Mark Baza during a telephone conversation that was conducted on May 30, 2003.

With best regards,

Michael D. Williams

Senior Economist
SourcePoint
Telephone: 16195955646
Internet: mwi@sourcepoint.org

Chihuahua: Confirmation of Corridor Evaluation [6/17/03]

Ing. Joaquin Barrios,
Anexado a esta nota electrónica esta la versión final de la Evaluación de Corredores de Chihuahua.

Varias modificaciones se han incorporado en la Evaluación de Corredores de Chihuahua. Estas modificaciones son las siguientes:

1. Se cambio el texto en la cejilla de "Descripción General". Debajo de ferrocarriles, se menciona que hay dos líneas de ferrocarril que cruzan la frontera entre México-US y que están dentro del estado de Chihuahua. También se menciona que los datos para estas dos líneas de ferrocarril no fueron proporcionados por el miembro del comité técnico de BINS del estado de Chihuahua.
2. Con respecto a los datos de carreteras:
a. Se inserto el segmento 5 de carretera MX -10 como segmento 13 de la carretera MX-2 en el resumen de carreteras.
b. Se movió el segmento 6 de la MX-10 como segmento 5 de la MX-10 en el resumen de carreteras.
c. Se hicieron los cambios necesarios para calcular los promedios.
d. La nueva información del resumen de carreteras fue re-insertada en la evaluación de corredores [Tabla 5].

Por favor contactarnos en una semana por si tiene alguna corrección, sugerencia o pregunta acerca de esta Versión Final de la Evaluación de Corredores de Chihuahua. Por favor contactar a Santiago Dávila si quiere organizar una reunión. Si no recibimos ningún contacto de su parte en una semana, presentaremos esta evaluación como la Versión Final al Comité Conjunto de Trabajo en julio.

Atentamente,
Santiago Dávila
Economic Analyst
SourcePoint, (SANDAG)
401 B Street, Suite 800
San Diego, Ca 92101
phone (619) 595-5635
fax (619) 595-5305

Coahuila: Confirmation of Corridor Evaluation [6/17/03]

Adela y Noe -
Esta nota electrónica representa una confirmación formal de su apruebo de la Versión Final de la Evaluación de Corredores de Coahuila realizada bajo el Estudio Bi-Nacional de Evaluación de Necesidades de Infraestructura de Transporte Fronterizo [BINS, por sus siglas en inglés] y llevado a cabo por SourcePoint.

La Versión Final de la Evaluación de Corredores fue enviada el 5 de junio del 2003.
Confirmación verbal fue obtenida el 16 de junio del 2003 durante una conversación por teléfono con Adela Blanco.

Atentamente,
Santiago Dávila
Economic Analyst
SourcePoint, (SANDAG)
401 B Street, Suite 800
San Diego, Ca 92101
phone (619) 595-5635
fax (619) 595-5305

New Mexico: Confirmation of Corridor Evaluation [6/03/03]

Adrian -

This note represents formal confirmation that you have approved the Final Version of the New Mexico Corridor Evaluation conducted under the Bi-National Border Transportation Infrastructure Needs Assessment Study [BINS] and performed by SourcePoint.

The Final Version of the Corridor Evaluation was sent to you on May 20, 2003.

Confirmation was obtained from you in a telephone discussion we had on June 3, 2003.

With best regards,

Michael D. Williams

Senior Economist
SourcePoint
Telephone: 16195955646
Internet: mwi@sourcepoint.org

Nuevo Leon: Confirmation of Corridor Evaluation [6/17/03]

Adela y Noe -

Esta nota electrónica representa una confirmación formal de su apruebo de la Versión Final de la Evaluación de Corredores de Coahuila realizada bajo el Estudio Bi-Nacional de Evaluación de Necesidades de Infraestructura de Transporte Fronterizo [BINS, por sus siglas en inglés] y llevado a cabo por SourcePoint.

La Versión Final de la Evaluación de Corredores fue enviada el 5 de junio del 2003.

Confirmación verbal fue obtenida el 16 de junio del 2003 durante una conversación por teléfono con Adela Blanco.

Atentamente,

Santiago Dávila

Economic Analyst
SourcePoint, (SANDAG)
401 B Street, Suite 800
San Diego, Ca 92101
phone (619) 595-5635
fax (619) 595-5305

Sonora: Confirmation of Corridor Evaluation [6/17/03]

Héctor -

Esta nota electrónica representa una confirmación formal de su apruebo de la Versión Final de la Evaluación de Corredores de Coahuila realizada bajo el Estudio Bi-Nacional de Evaluación de Necesidades de Infraestructura de Transporte Fronterizo [BINS, por sus siglas en inglés] y llevado a cabo por SourcePoint.

Durante la reunión del pasado 13 de junio del 2003, SourcePoint y los miembros del Comité Técnico que asistieron a la reunión, llegaron al acuerdo de que SourcePoint daría una semana más en la cual se podía recibir cualquier sugerencia o cambio para la evaluación de corredores. Después de esa semana, SourcePoint presentaría la evaluación de corredores del estado como Versión Final.

La Versión Final de la Evaluación de Corredores de Sonora fue enviada el 6 de junio del 2003.

Confirmación verbal fue obtenida el 16 de junio del 2003 durante una conversación por teléfono con Héctor García.

Atentamente,
Santiago Dávila
Economic Analyst
SourcePoint, (SANDAG)

Tamaulipas: Confirmation of Corridor Evaluation [6/12/03]

Attached to this e-mail are two documents:

1. A copy of the Tamaulipas Corridor Evaluation [one Excel spreadsheet].
2. A copy of the Tamaulipas Highway Summary [one Excel spreadsheet]

Ernesto - Please contact me by June 12, 2003, if you have any corrections, suggestions or concerns regarding the Tamaulipas Corridor Evaluation. If we do not hear from you by June 12, 2003, we will consider this Corridor Evaluation the Final Version for Tamaulipas.

Please remember that the next BINS Technical Committee meeting is scheduled for Friday, June $13^{\text {th }}$ from 11:30 AM to 5:00 PM. For those of you not able to attend the San Diego meeting, a conference call will begin at 1:00 PM Pacific Coast time. At that meeting we will be voting on the Proposed Resolutions, therefore, it is imperative that you or a representative from your state participate in the meeting.

The Tamaulipas Corridor Evaluation will be discussed at the upcoming BINS Technical Committee meeting. The last corridor evaluation [for Sonora] will be sent today.

With best regards,

Michael D. Williams

Senior Economist
SourcePoint
Telephone: 16195955646
Internet: mwi@sourcepoint.org

Texas: Confirmation of Corridor Evaluation [6/24/03]

Mary -
This note represents formal confirmation that you have approved the Final Version of the Texas Corridor Evaluation conducted under the Bi-National Border Transportation Infrastructure Needs Assessment Study [BINS] and performed by SourcePoint.

Thank you for the note accepting the Final Version of the Texas Corridor Evaluation.
With best regards,

Michael D. Williams

Senior Economist
SourcePoint
Telephone: 16195955646
Internet: mwi@sourcepoint.org

NOTICES OF TECHNICAL COMMITTEE MEETINGS

Email Notice of Technical Committee Meeting, Sent 4/23/03

Ladies \& Gentlemen -
The next BINS Technical Committee Meeting will be held Wednesday April $30^{\text {th }}$ from 11:30 am to 5:00 pm [Pacific Coast Time] in San Diego, California. Between 1:00 pm and 2:30 pm Pacific Coast time (2:00 pm and 3:30 pm Arizona time), an operator from San Diego will contact you to establish a teleconference call with the rest of the BINS Technical Committee members. I know from our earlier discussion that you will not be able to participate in the meeting. Would you like someone to sit in your place for this meeting? If so, what telephone number should the operator dial?

Attached to this email note are three documents:

1. The Meeting Agenda
2. Proposed Resolutions 1 and 2
3. Corridor Evaluation for Arizona

The main purpose of this meeting is to gather Technical Committee member's opinions and guidance on these documents and discuss them during the teleconferencing section of the Technical Committee Meeting. Please review these documents meticulously and prepare two suggestions, or questions, for each document (Proposed Resolution 1, Proposed Resolution 2, and Corridor Evaluation for Arizona). SourcePoint will contact you on Monday, April $28^{\text {th }}$, to gather your suggestions and questions and discover if you will have a substitute for the meeting. We will summarize the suggestions and questions that all Committee members provide and present them during the Technical Committee Meeting on Wednesday, April $30^{\text {th }}$.

This Technical Committee meeting is the first of three meetings that will be held during the next two months during which we will review each state's corridor evaluation.

We thank you for your support and participation,

Michael D. Williams

Senior Economist
SourcePoint
Telephone: 16195955646
Internet: mwi@sourcepoint.org

Email Notice of Technical Committee Meeting, Sent 5/13/03

Ladies \& Gentlemen -
Attached to this e-mail note are three documents:

1. Agenda for the May $16^{\text {th }}$ BINS Technical Committee Meeting
2. A copy of the Baja California Corridor Evaluation [one Excel spreadsheet].
3. Survey Management Memorandum \# 2-Survey Completion. The purpose of this memorandum is to update the BINS Technical Committee on the survey completion.

Please remember that the BINS Technical Committee meeting is scheduled on May $16^{\text {th }}$ from 11:30 AM to 4:00 PM. For those of you not able to attend the San Diego meeting, a conference call will occur between 1:00 PM and 2:30 PM. Items two and three [above] will be discussed at the upcoming meeting. During the next week we will send corridor evaluations for other states.

If you have any questions, please contact me at 16195955646 or mwi@sourcepoint.org.

With best regards,

Michael D. Williams

Senior Economist
SourcePoint
Telephone: 16195955646
Internet: mwi@sourcepoint.org

EMAIL NOTICE OF TECHNICAL COMMITTEE MEETING, SENT 6/09/03

Ladies \& Gentlemen -

Attached to this e-mail note are four Microsoft Word documents:

1. A copy of the Agenda for the June $13^{\text {th }}$ Technical Committee Meeting
2. A copy of the Proposed Resolutions with a place to vote for each of the resolutions at the bottom of each page in the document
3. Attachment \#1 - The Eleven-Step Procedure discussed in Proposed Resolution \#1
4. Attachment \#2 - The Criteria discussed in Proposed Resolution \#2

Please vote on each of the Proposed Resolutions (pages 2, 3 and 4 of word document). After voting, please send your votes to me via e-mail or fax by Wednesday, June 11, 2003.

Remember, the next BINS Technical Committee meeting is scheduled for Friday, June $13^{\text {th }}$ from 11:30 AM to 5:00 PM. For those of you not able to attend the San Diego meeting, a conference call will begin at 1:00 PM Pacific Coast Time.

At the next Technical Committee meeting, your votes on the Proposed Resolutions will be reviewed and verified. Because of this, it is imperative that you or a representative from your state participate in the meeting. I will call you during this week to confirm your participation, and review your submitted vote. In addition to voting on the proposed resolutions, we will also review corridor evaluations for seven states.

If you have any questions, please contact me at 16195955646 or mwi@sourcepoint.org.
With best regards,

Michael D. Williams

Senior Economist
SourcePoint
Telephone: 16195955646
Internet: mwi@sourcepoint.org

Email Notice of Technical Committee Meeting, Sent 11/14/03

E-mail Note with BINS Agenda \& Proposed Resolutions

TO: BINS Technical Committee Members

FROM: SourcePoint

Subject Line: BINS Technical Committee Meeting Agenda [November 21, 2003] and Proposed Resolution for Voting

Attached to this e-mail note are two Microsoft Word documents:

1. Agenda for the November 21, 2003 BINS Technical Committee Meeting
2. Proposed Resolution of Approval

In order to request approval of the BINS project from the Joint Working Committee (JWC), the Technical Committee is being asked to tentatively approve the BINS draft final report and to forward it to the JWC for final approval and acceptance for distribution. Please vote on the attached Proposed Resolution and send your vote to Santiago Dávila via e-mail or fax by Thursday, November 20.

The next BINS Technical Committee meeting is scheduled for Friday, November $21^{\text {st }}$ from noon to 5:00 PM. For those of you not able to attend the San Diego meeting, a conference call will begin at 1:00 PM Pacific Coast Time. Instructions for the conference call will be e-mailed on Monday, November $17^{\text {th }}$.

At the Technical Committee meeting, SourcePoint will summarize and address the comments received from each state. Also, your vote on the Proposed Resolution will be reviewed and verified. Because of this, it is imperative that you or a representative from your state participate in the meeting. Santiago Dávila or Elisa Arias will call you next week to confirm your participation, obtain your comments or suggestions on the BINS draft final report, and review your submitted vote.

If you have any questions, please contact Santiago Dávila at 16195955635 or sda@sourcepoint.org or Elisa Arias at 16195955336.

REVIEW AND COMMENTS ON REPORTS

Memo Attached to an Email Sent 12/5/03

December 5, 2003

TO: BINS Technical Committee
FROM: Elisa Arias, SourcePoint
SUBJECT: Proposed Response to Comments and Suggestions on the BINS Draft Final Reports

On November 7, 2003, three reports were mailed to the BINS Technical Committee representatives for review and comment. These reports are the following:

- BINS Draft Final Executive Summary
- BINS Draft Final Report
- BINS Draft Final Appendices

Written comments were requested by November 20, 2003. A meeting of the BINS Technical Committee was held on November 21, 2003 and SourcePoint reviewed comments received. At this meeting the BINS Technical Committee representatives had another opportunity to provide comments. The comment period was extended to December 3, 2003 to allow for consultation among agencies on pending issues and to provide additional review time requested by the Texas representative.

The attached matrix includes all major comments and suggestions on the reports that were received through December 3, 2003 and SourcePoint's proposed response to the comments. Please review this matrix to ensure that your agency's comments were addressed adequately and report any concerns in writing by December 10, 2003 to Elisa Arias (ear@sandag.org or by fax 1-619-595-5305).

The BINS reports will be revised to address the comments following the responses presented in the matrix. The revised Executive Summary will be provided to the BINS Technical Committee.

We appreciate your cooperation as we finalize the BINS project.

Memo Attached to an Email Sent 12/22/03

December 22, 2003

TO: \quad BINS Technical Committee

FROM: Elisa Arias, SourcePoint

SUBJECT: Revised Executive Summary Report

As agreed at the BINS Technical Committee meeting on November 21, 2003, we are enclosing the revised Executive Summary. This report addresses comments received through December 3, 2003. No further suggestions were received on SourcePoint's proposed response to the comments summarized in the matrix that was reviewed by the Technical Committee.

Please review the revised Executive Summary report and provide any comments in writing by Friday, January 9, 2004 to Elisa Arias (ear@sandag.org or by fax 1-619-595-5305).

Thanks for your cooperation as we finalize the BINS project.

Memo Attached to an Email Sent 1/9/04

January 9, 2004

TO:	Binational Border Transportation Infrastructure Needs Assessment Study (BINS) Technical Committee
FROM:	Elisa Arias, SourcePoint
SUBJECT:	Final Resolution for Voting

This Memorandum is to ask the Technical Committee to complete the BINS Final Reports tentative approval process, initiated in November 2003. The BINS Technical Committee is requested to provide tentative approval of the BINS final reports and to recommend that the Joint Working Committee (JWC) approve and accept for distribution the BINS final reports at its meetings on March 1-3, 2004.

Background

At the BINS Technical Committee meeting held on November 21, 2003, the following votes on the BINS Draft Final Reports were received:

- Approve: Arizona, Baja California, Chihuahua, Coahuila, Sonora, Tamaulipas, Secretariat of Communications and Transportation (Secretaría de Comunicaciones y Transportes)
- Needs more discussion: California, New Mexico, Texas
- Missing Vote: Nuevo León

As agreed at this meeting, SourcePoint prepared a matrix of comments and proposed responses, which was provided to the Technical Committee for review and concurrence on December 5, 2003. Subsequently, SourcePoint revised the Executive Summary report and provided it to the Technical Committee for review and comment on December 23, 2003. Revisions to the main report and appendices have been made according to the responses included in the matrix of comments referenced above.

Request

Please vote on the enclosed Resolution and send your vote to Elisa Arias via e-mail or fax by Thursday, January 15, 2004. We will summarize the votes and inform the BINS Technical Committee of the voting results.

Final reports will be available prior to the JWC meetings on March1-3, 2004. If you have any questions, please contact me at 1-619-595-5336, by fax at 1-619-595-5305 or by e-mail at ear@sandag.org.

Thanks for your continued cooperation.

Email Sent 1/15/04

To: BINS Technical Advisory Committee Members
SourcePoint has received votes from all representatives. The results are as follows:

Approve: Arizona, Baja California, California, Chihuahua, Coahuila, New Mexico, Nuevo León, Sonora, Tamaulipas, Texas, Secretariat of Communications and Transportation (Secretaría de Comunicaciones y Transportes)

Requires more discussion: None

The Technical Committee representative from Texas abstained from recommending distribution of the report and deferred to the Texas representative of the JWC for recommendation/approval of distribution.

Comments received by SourcePoint on the revised Executive Summary through January 9, 2004 are being incorporated into the final documents.

If you have any questions, please contact me. Thanks very much for your cooperation.
Elisa Arias
Phone: 619-595-5336
Fax: 619-595-5305
E-mail: ear@sandag.org
Please note new phone and fax numbers effective January 26, 2004:
Phone: (619) 699-1936
Fax: (619) 699-1905

PROPOSED RESOLUTIONS

RESOLUCIONES PROPUESTAS

Bi-National Border Transportation Infrastructure Needs Assessment Study [BINS]

Estudio de Evaluación de Necesidades de Infraestructura de Transporte Fronterizo [BINS, por sus siglas en inglés]

Proposed Resolution \#1 Border Corridor Evaluation Methodology

(See Attachment \#1 for Procedure)
The BINS Technical Committee approves an 11 step procedure to evaluate border transportation corridors within each state.

Resolución Propuesta \# 1 Metodología de Evaluación de Corredores de La Frontera

(Ver Anexo \#1 con el Procedimiento)
El Comité Técnico de BINS aprueba el procedimiento de 11 pasos para evaluar los corredores de transporte fronterizo de cada estado.

Approve / Apruebo \qquad
Requires More Discussion / Require Más Discusión

Name / Nombre \qquad State / Estado \qquad

Date/ Fecha \qquad

Proposed Resolution \#2 Border Corridor Selection Criteria

(See Attachment \#2 for Criteria)
The BINS Technical Committee approves the criteria to be used in the 11 step methodology to evaluate border transportation corridors within each state.

Resolución Propuesta \# 2 Criterio de Selección de Corredores Fronterizos

(Ver Anexo \#2 con los Criterios)
El Comité Técnico de BINS aprueba los criterios que serán usados en la metodología de 11 pasos para evaluar corredores de transporte fronterizo para cada estado.

Approve / Apruebo \qquad
Requires More Discussion / Requiere Más Discusión
Name / Nombre \qquad State / Estado \qquad

Date/ Fecha \qquad

Recommendation to the Joint Working Committee

The BINS Technical Committee approves the previous two resolutions and recommends their approval by the Joint Working Committee.

Recomendación al Comité Conjunto de Trabajo

El Comité Técnico de BINS aprueba las dos previas resoluciones y las recomienda al Comité Conjunto de Trabajo para su aprobación.

Approve / Apruebo
Requires More Discussion / Requiere Más Discusión
Name / Nombre \qquad State / Estado \qquad

Date/ Fecha \qquad

PROPOSED RESOLUTION \#3 Recommendation to the Joint Working Committee

The BINS Technical Committee has reviewed the BINS Draft Final Report, and tentatively approves it with a recommendation to the Joint Working Committee for its final approval and acceptance for distribution.

RESOLUCION PROPUESTA Recomendación al Comité Conjunto de Trabajo

El Comité Técnico de BINS ha revisado el Borrador Final del Informe de BINS y lo aprueba tentativamente con una recomendación al Comité Conjunto de Trabajo para su aprobación final y aceptación para su distribución.

Approve / Apruebo \qquad
Requires More Discussion / Requiere Más Discusión \qquad
Name / Nombre \qquad State / Estado

Date/ Fecha \qquad

PROPOSED RESOLUTION \#4 Recommendation to the Joint Working Committee

The BINS Technical Committee has reviewed the BINS Project Final Reports (Executive Summary, Report, and Appendices), and tentatively approves them with a recommendation to the Joint Working Committee for their final approval and acceptance for distribution.

RESOLUCION Recomendación al Comité Conjunto de Trabajo

El Comité Técnico de BINS ha revisado los Informes Finales del Proyecto BINS (Resumen Ejecutivo, Informe y Apéndices) y los aprueba tentativamente con una recomendación al Comité Conjunto de Trabajo para su aprobación final y aceptación para su distribución.

Approve / Apruebo \qquad

Requires More Discussion / Requiere Más Discusión
(Please attach reasons for requesting more discussion cross-referencing requested discussions with Report documents)

Name / Nombre \qquad State / Estado

Date/ Fecha \qquad

BI-NATIONAL BORDER TRANSPORTATION INFRASTRUCTURE NEEDS ASSESSMENT STUDY [BINS] PROPOSED RESOLUTIONS AND DISCUSSION

Introduction

Shown below are four proposed resolutions and a recommendation that the BINS Technical Committee approved.

Proposed Resolution \#1 - Border Corridor Evaluation Methodology

The BINS Technical Committee approves an 11 step procedure to evaluate border transportation corridors within each state.

Proposed Resolution \#2 - Border Corridor Selection Criteria

The BINS Technical Committee approves the criteria to be used in the 11 step methodology to evaluate border transportation corridors within each state.

Proposed Resolution \#3 - BINS Draft Final Report

The BINS Technical Committee reviewed and tentatively approves the BINS Draft Final Report.

Proposed Resolution \#4 - BINS Project Final Reports

The BINS Technical Committee reviewed and tentatively approves the BINS Project Final Reports (Executive Summary, Report, and Appendices).

Recommendation to the Joint Working Committee

The BINS Technical Committee approves the four resolutions, and recommends their approval by the Joint Working Committee.

On pages two and three is a discussion of the Corridor Evaluation Methodology and a detailed description of the 11 step procedure to implement the corridor evaluation.

On page 4 is a listing and description of the criteria used in the corridor evaluation methodology.

Discussion

Corridor Evaluation Methodology

This corridor evaluation uses quantifiable data with a systematic method to evaluate transportation corridors. Corridors are combinations of modes that move people, vehicles and goods from one location to another. To facilitate the use of the data and methodology, the computations are calculated in formulas contained in a spreadsheet that will be sent to each of the states. Each evaluation spreadsheet is tailored to each state, thus each state's evaluation spreadsheet contains unique data - even though the methodology is the same. It is envisioned that each state will use its spreadsheet to conduct corridor evaluations, at its discretion.

Overall, the evaluation is conducted by compiling data, allocating the data to corridors and comparing corridors [within a state] to one another. There are 16 indicators' for which we compile data for each corridor. The overall evaluation uses two broad categories of data:

1. Historical Data - data for 16 indicators for the year 2000.
2. Change Data - a combination of actual changes for the 16 indicators from 2000 to 2020 and per cent changes for the same 16 indicators from 2000 to 2020.

Conducting the evaluations is based on the ordering of data from highest to lowest to determine need. For example, assume there are three corridors in a state and the Average Annual Daily Traffic [AADT] in Corridor A is 157,000, the AADT for Corridor B is 450,000 and the AADT for Corridor C is 30,000. In this example, Corridor B is listed first because it has the highest AADT [450,000], its evaluation results are 1, and it has the highest need. Corridor A is listed 2nd because its AADT is 157,000 [second highest], its evaluation results are 2, and it has the second highest need. Corridor C is listed 3rd because it has the lowest AADT [30,000], its evaluation results are 3 and it has the lowest need. This process is repeated for all 16 indicators with data for calendar year 2000, for all 16 indicators for the change in the data between 2000 and 2020, and all 16 indicators for the percent change in the data between 2000 and 2020 . There are a total of 48 evaluations compiled if all the data are present.

Higher values for the indicators represent more traffic (AADT), more congestion (LOS), more trade (dollar value of air, maritime, rail and truck cargo across POEs), more vehicles (number of passenger vehicles, trucks, buses, and rail cars across a POE), which point to both the relative importance of the corridor and its infrastructure needs. The highest value is given "first place" or a score of 1 and represents the highest need.

The evaluation results are summed by mode. For example, there are four indicators for highways AADT, the highway length [in miles], the level of service [LOS] and the highway capacity at peak hours. If a corridor was listed first for each indicator, its highway score would be a four [a score of one for each indicator]. This is done for Land Ports of Entry [POE - five indicators], airports [one

[^12]indicator], maritime ports [two indicators] and railroads [four indicators]. The lower the score, the higher the listing. It follows that the lowest mode score represents the corridor with the greatest need for that mode.

The overall score for each corridor is then calculated by summing the five modes scores [one each for highways, POE, airports, maritime ports and railroads]. The corridor with the lowest overall score is listed first and has the highest overall need. The corridor with the second lowest overall score is listed second and has the second highest need. The corridor with the highest overall score is listed third and has the lowest overall need.

Recall there is one historical component and there are two change components (change in absolute terms and percent change). Without any adjustments, the change component has twice the impact on the final result as the historical data. It was decided that the historical values are as important as the projected changes. To accomplish equal weighting, the historical scores are multiplied by 2.

The Steps to compile the corridor evaluation for a particular state are the following:
Step 1: Only use facilities that meet minimum criteria [(a) Be within 100 km of US-Mexico border; (b) for highways and railroads - serve an international POE; (c) for airports and maritime ports - they must be designated as an international port of entry [POE].

Step 2: Divide the data by mode [highway, land POE, airport, maritime port, and railroad]
For Steps 3 through 8, one set of computations uses the data for calendar year 2000, and a second set of computations uses the 2020 projections. These computations are the following:

Step 3: For highways, compile the criteria by corridor. If there is more than one highway in a corridor, the highway data for each highway needs to be summed to obtain the corridor total. The Average Annual Daily Traffic [AADT] for each corridor and for all corridors needs to be computed as well as the relative share of AADT amongst the corridors.

Step 4: For railroads, compile the data by corridor.
Step 5: For land POE, compile the data for all land POE. For example, the number of trucks crossing at each POE must be aggregated to obtain the total truck crossings for all land POE.

Step 6: For airports, compile the data for all airports. For example, the imports at each airport must be summed to obtain total imports at all airports.

Step 7: For maritime ports, compile the data for all maritime ports. For example, the imports at each maritime port must be summed to obtain total imports at all maritime ports.

Step 8: Distribute the land POE, airport and maritime port data amongst the corridors based on the distribution of AADT amongst the corridors.

Step 9: Calculate the percent change for each corridor mode from 2000 to 2020.

The Listing

Step 10: Utilize corridor data for calendar year 2000 and the percent change for 2000 to 2020. For each item, sort the corridor totals from highest score to lowest score. If there are three corridors, the highest score is 1 and the lowest score is 3 .

Step 11: Sum the scores for each mode. The corridor with the lowest score is listed 1st, while the corridor with the highest score is listed 3rd or last [assumes three corridors].

Border Corridor Selection Criteria

Minimum Criteria

- That all facilities lie within 100 km of the US-Mexico border
- That highways and railroads serve an international Port of Entry [POE]; that airports and maritime ports be designated as international POE.

Quantifiable Criteria -to be gathered for calendar year 2000 and a forecast for 2020

- For Highways - the beginning \& ending segment markers, and the following data by segment: average annual daily traffic, level of service, traffic capacity at peak hours, traffic volume at peak hours, and the corridor in which each segment resides.
- For Land Ports of Entry - the number of trucks, buses, passenger vehicles, rail cars and pedestrians crossing the border, and the volume and value of goods crossing the border by rail and by truck.
- For Airports - the total volume and total value of goods being exported and imported at the airport; the Mexican volume and Mexican value of goods being exported and imported at the airport; and the runway length for each runway at the airport.
- For Maritime Ports - the total volume and total value of goods being exported and imported at the maritime port; the Mexican volume and Mexican value of goods being exported and imported at the maritime port; and the channel depth of the main channel at the port.
- For Railroads - the location of Intermodal facilities and the corridor in which the rail lines reside.

APPENDIX 6: MEETING MINUTES

APPENDIX 6: MEETING MINUTES

SourcePoint - Caltrans

November 7, 2002
December 5, 2002
February 3, 2003
April 2, 2003
April 22, 2003
June 19, 2003
July 2, 2003
July 29, 2003

SourcePoint - Caltrans - BGIS

December 16, 2002
August 1, 2003

BINS Technical Committee

November 19, 2002
April 30, 2003
May 16, 2003
June 13, 2003
November 21, 2003

SOURCEPOINT - CALTRANS MEETING MINUTES

Dates:

November 7, 2002
December 5, 2002
February 3, 2003
April 2, 2003
April 22, 2003
June 19, 2003
July 2, 2003
July 29, 2003

MINUTES FROM THE SOURCEPOINT - CALTRANS MEETING CONDUCTED NOVEMBER 7, 2002

Goals of Meeting

There are two main goals for the meeting. The first deals with approving the project management and framework. The second objective is to finalize the administrative details and agenda of the BINS Technical Committee Meeting scheduled for November $19^{\text {th }}$.

Discussion

Regarding Project Management:

- The project's schedule of tasks has been revised in order to more accurately reflect the way the project is being carried out. Caltrans representatives agreed on the creation of this framework and recommended we present it to the JWC in December.

Regarding the BINS Technical Committee Meeting November 19:

- The attendees concluded that the JWC prefers the U.S. approach of evaluating projects on a state-by-state basis and also recognized that the JWC hopes to guide the BINS project in that direction.
- The group agreed on creating evaluation criteria for choosing transportation corridors.
- The Technical Committee and JWC will use these criteria to choose their preferred corridors.

Regarding Evaluation Methodology:

- BINS will compare and assess the corridor criteria, and present the findings to the TWC and JWC.

Follow-up

- Gene Pound will be removed from the list of Caltrans representatives.
- BINS Team will send emails the Mexican States of Tamaulipas and Nuevo León inviting them to the Technical Committee meeting in November.
- Sergio and Lisa will provide comments on:
- The Transportation Planning Process Technical memo.
- Current profiles of corridors.

Technical Committee Meeting, November 19

- BINS Meeting with Caltrans Representatives, December 5 @ 9:00 AM
- Joint Working Committee meeting, December 12 \& 13, 2002, Baltimore, MD.

Attendees

California Department of Transportation [Caltrans]

- Trent Clark
- Sergio Pallares

SourcePoint

- Marney Cox
- Santiago Dávila
- Oliver Kaplan
- Michael Williams

San Diego Association of Governments

- Elisa Arias
U.S. Federal Highway Administration
- Lisa Dye

MINUTES FROM THE SOURCEPOINT - CALTRANS MEETING CONDUCTED DECEMBER 5, 2002

Goals of Meeting

The main goal for the meeting is to review Marney Cox's [SourcePoint] presentation to the Joint Working Committee (JWC) in Baltimore, Maryland on December 13, 2002. At this meeting, Marney [SourcePoint] will reconfirm the procedure approved by the Technical Committee on November 19, 2002 with the JWC. Also, Marney [SourcePoint] will present the criteria elements for the JWC to agree on.

Discussion

- Regarding the criteria-based procedure:
- The attendees decided to ask the Joint Working Committee (JWC) whether or not it wants projects to be prioritized.
- A memo describing the criteria will be created and sent to the JWC and Technical Committee.
- Regarding the criteria:
- The states will be asked for specific data, including a listing of projects along corridors.
- Establish two sets of criteria, "minimum criteria" and "quantitative criteria". Minimum criteria will be "Yes/No" responses, and quantitative criteria will ask for numeric values.
- There was a consensus to integrate multimodal facilities into the study.

Follow-up

- Further develop an objective, uniform system of criteria that all states agree on.
- Create a technical memo to explain why we are using ADT (Average Daily Traffic) as a significant part of the criteria.
- CALTRANS meeting Tuesday, November $10^{\text {th }}$ at 10 AM.

Attendees

California Department of Transportation [Caltrans]

- Mark Baza
- Beth Landrum
- Sergio Pallares

SourcePoint

- Marney Cox
- Santiago Dávila
- Michael Williams

San Diego Association of Governments

- Elisa Arias

US Federal Highway Administration

- Lisa Dye

MINUTES FROM THE SOURCEPOINT - CALTRANS MEETING CONDUCTED FEBRUARY 3, 2003

Goals of Meeting

There are four main goals for the meeting. Most importantly, SourcePoint and Caltrans will review the BINS Questionnaire, and give suggestions and ideas for needed improvements. Secondly, the attendees will decide on a process for the BINS Criteria Approval, followed by an update on GIS Issues related to the project. The final goal of the meeting is to determine which party will pay for the translation of the final report.

Discussion

- Regarding the criteria for the questionnaire:
- Marney Cox [SourcePoint] explained to Sergio Pallares [California Department of Transportation - Caltrans] that the main intention of SourcePoint is to present a criteria draft to the Technical Committee (agreed on during November's meeting) in order to provide them with something to comment on. In addition to this criteria draft, SourcePoint will present the questionnaire that will be used to collect and analyze the criteria.
- Sergio [Caltrans] pointed out that it was important to spend some time explaining and justifying the criteria. SourcePoint already has a justification draft started and will use it to "market" the criteria to the Technical Committee. The revised justification, questionnaire, and attached memo will be sent out to the Technical Committee next week.
- The attendees agreed that the cover page on each part of the questionnaire will be reorganized, with all the items that are general information grouped in a box on the top of the page, and the instructions/directions grouped in a box below the general information box
- SourcePoint will provide a tentative list of facilities to all the states. This list is part of the questionnaire.
- Regarding the Corridors section of the questionnaire: Under the example tab, there will be a definition of a "transportation corridor", along with the "100 kilo....." specification. The definition of the corridor will also mention that "...the corridors serve a POE".
- Surface POE will be changed to Land POE.
- Water Port will be changed to Maritime POE.
- For the airport section, on Part 1 (Corridors), the definition will be changed to include the first component "within 100 kilo...", and the second component "must serve as an international POE" for each mode (Maritime Ports, Airports, and Railroads).
- The second component, airport section, Part 1 (Corridors) will now read "must serve as a POE from goods coming from Mexico to the U.S."
- SourcePoint will group the railroads and highways on top, as they serve a POE, and group the airports and water modes, as they are designated as POEs.
- Caltrans pointed out the difference between census projections and "SCAG" projections. A source needs to be obtained for either the census or "SCAG" projections of data on the SocioEconomic Tab. Trade forecast will be hard to obtain. Highways may have AADT projections.

However, POE will not have projections. Projections for railroads are private information that will be hard to obtain.

- Regarding Part 2b (Ports of Entry):
- Under the example tab, number 2 of the minimum criteria will be left out.
- On Part 2b (POE), add "in calendar year 2000" for number 3 of the Quantifiable criteria.
- Question \# 6, under Quantifiable Criteria on Part 2b passenger vehicles will replace personal vehicles.
- For questions \# 11-16, Part 2b, it will read "Estimate" instead of "Specify"
- Questionnaire (part 2 b) under the rail information needs three things: number of rail cars, number of containers and number of bulk goods.
- Regarding Part 2a (Highways):
- The allocation of AADT to different corridors (Part 2a) is too difficult. The allocation section of all the questionnaire parts will be left out. Data will be allocated specifically to only one corridor.
- For the allocation of data from the POEs to the different highways on the U.S. side, a method will be used, where the percentage of AADT in different sections of the 100 KM border line will be used to split/allocate the data from the POE. In other words, the AADT percentage of traffic will serve as a tool for the allocation of POE crossings among the HWYS that serve that specific POE.
- Projected data (2020) will be moved to the side of the historic data.
- Regarding Part 2c (Airports):
- The specific mode where the cargo is transferred to needs to be collected.
- A question will be added to the Airport questionnaire (Part 2c), "Is an airport served by a railroad facility?"
- A question concerning the amount of passengers for Airports will be added IF the Technical Committee sees the need for it.
- For the questions under the quantifiable criteria for Airports, the place of origin should be added. For example, "Specify the volume of goods [in tons] coming from Mexico and transported at the airport in calendar year 2000...."
- Regarding Part 2e (Maritime Ports):
- A question will be added to the Maritime Port questionnaire (Part 2e), "Does the Maritime Port serve by a railroad facility?"
- Minimum criteria question \#2 for Maritime Ports will read "Does the maritime port handle goods to/from Mexico and U.S.?"
- Under the quantifiable criteria for Maritime Ports, channel will be changed to channel(s).
- Questionnaire (part 2e) under the Maritime Port information, it needs to ask total tons, dollars and what portion of that comes from Mexico (\%).
- Under the Maritime Port questionnaire, the specific mode where the cargo is transferred to needs to be collected.
- Regarding the questionnaire as a whole, the attendees agreed that:
- "Serve" will be used instead of "directly or indirectly" throughout the entire study.
- The questionnaire for railroads will be left out. However, the data for international cargo transported by railroads will be captured in the POE tab. Under the POE questionnaire tab,
we have a question that captures the \% of cargo transported. A question regarding which corridor each rail line is in will be added to the POE questionnaire tab.
- All the rail line information will be picked up on the other modes.

Follow-up

- The revised justification, questionnaire, and attached memo will be sent out to the Technical Committee next week.
- Caltrans and SourcePoint will discuss translation issues for the remaining parts of the study and the final report.
- Questionnaire will be mailed out to Carlos Lopez [SAHOPE].
- SourcePoint will inform Caltrans of any progress on the BINS use of GIS functions.

Attendees

California Department of Transportation [Caltrans]

- Mark Baza
- Trent Clark
- Beth Landrum
- Sergio Pallares

SourcePoint

- Marney Cox
- Santiago Dávila
- Amir Masliyah
- Michael Williams

San Diego Association of Governments

- Elisa Arias
U.S. Federal Highway Administration
- Lisa Dye

MINUTES FROM SOURCEPOINT - CALTRANS MEETING CONDUCTED APRIL 2, 2003

Goals of Meeting

There are five main goals for the meeting. SourcePoint will give an overview of progress made thus far, specifically as it relates to questionnaire responses. Also, SourcePoint and Caltrans will review two resolutions concerning corridor evaluation that will be recommended to the Technical Committee for approval. Next, the attendees will examine the steps needed to complete the California Corridor Evaluation and use this example to lead into a review of the Corridor Database System Plan. Finally, the attendees will outline the logistics for the April $25^{\text {th }}$ meeting with the Technical Committee.

Discussion

- Regarding SourcePoint's progress with data retrieval:
- SourcePoint and Caltrans decided on April 11th as a "drop dead" date where no more questionnaire responses will be accepted from the border-states.
- The attendees decided on utilizing alternate sources of data (HPMS, various websites) to populate the incomplete questionnaires.
- Regarding Resolutions \#1 \& Resolution \#2:
- Numerous word, phrase, and organizational adjustments were made to the resolutions that will be reflected in the final drafts.
- Regarding the California Corridor Evaluation Example:
- Caltrans expressed difficulty in providing the evaluation data to SourcePoint by the April 4 deadline, and a new April 11 deadline was created.
- In order to receive approval of the resolutions from the Technical Committee, members of the meeting expressed the need to show how a corridor evaluation will affect each state via an example evaluation of at least one state (most likely Arizona).
- Regarding the Corridor Database System Plan:
- An Excel spreadsheet format will be used as the database and evaluation tool for all the border-states.
- BGIS project data will have GIS coordinates that can be incorporated into the BGIS layers once the BGIS project is completed.
- A matrix will be created to show the connection between the Binational study and the BINS database.

Follow-up

- The Technical Committee will meet April 30th, (rather than April 25th), and the members that cannot attend in person will be teleconferenced in.
- The Joint Working Committee will meet in June (rather than in May).

Attendees

California Department of Transportation [Caltrans]

- Mark Baza
- Trent Clark
- Beth Landrum
- Sergio Pallares

SourcePoint

- Marney Cox
- Santiago Dávila
- Amir Masliyah
- Michael Williams

San Diego Association of Governments

- Elisa Arias

MINUTES FROM SOURCEPOINT - CALTRANS MEETING CONDUCTED APRIL 22, 2003

Goals of Meeting

There are four main goals for the meeting. SourcePoint will give an update and overview of the questionnaire completion results, and SourcePoint will also present alternative solutions for obtaining Mexican data. SourcePoint and Caltrans will review and discuss the strategy to gain approval on the two proposed resolutions (concerning corridor evaluation) from the Technical Committee. Lastly, the attendees will discuss outstanding issues and arrangements for the April $30^{\text {th }}$ meeting with the Technical Committee.

Discussion

- Regarding Alternative Solutions for the Mexican Data:
- SourcePoint will find data for Sonora, Coahuila, and Nuevo Leon from a myriad of sources, and send it to these states for review.
- A memo will be sent to the Technical Committee and Joint Working Committee summarizing the responses to the questionnaires, and the procedure to supplement the data deficiencies.
- Options for obtaining projection data include: SCT, locating the sources of the Mexican states that have successfully completed the surveys, and using demographic data to create transportation projections.
- Regarding the Two Corridor Evaluation Resolutions:
- SourcePoint will not ask for approval on the resolutions until each state has viewed its particular evaluation results (early June timeframe). There will be a three step evaluation presentation process leading up to the vote.
- The attendees resolved to email the Technical Committee members the following, ASAP: the agenda for the April 30th meeting, the resolutions, and the Arizona Corridor Evaluation.
- Regarding the Arizona Corridor Evaluation and the Evaluations in General:
- SourcePoint will create a written explanation to accompany the corridor evaluations.
- The "weighting factor" will be clearly displayed in the evaluation spreadsheet and highway maps will be added.
- Caltrans expressed that the use of the word "ranking" used throughout the evaluation might not accurately convey that corridors within a state are of equal importance. Caltrans stressed that it is the needs and characteristics of these corridors that differ.
- SourcePoint reassured Caltrans that by weighting projects along corridors, the desires of the transportation official is ultimately the key influencing factor.
- SourcePoint and Caltrans reached a consensus to change the phrase "corridor ranking" to "evaluation results".
- SourcePoint decided to embed a general description of each of the corridors within each state evaluation.

Follow-up

- SourcePoint resolved to tie in the corridors highlighted in the BINS study with the corridors designated "High Priority Corridors" by the U.S. Congress.
- SourcePoint will email the Technical Committee members the details of the April 30th meeting and request questions or issues about the agenda items prior to the meeting.
- There will be a "dry run" of the BINS Technical Committee Meeting April 28th.

Attendees

California Department of Transportation [Caltrans]

- Mark Baza
- Sergio Pallares

SourcePoint

- Marney Cox
- Santiago Dávila
- Amir Masliyah
- Michael Williams

MINUTES FROM THE BINS - CALTRANS: JWC PREP MEETING \#1 CONDUCTED JUNE 19, 2003

Goals of Meeting

The purpose of the meeting is to prepare for the Joint Working Committee on July 10-11 in Mexico City.

Discussion

- Regarding the Status of the BINS Project:
- As of June 19, SourcePoint has received final approval on corridor evaluations for all states except Texas, Tamaulipas, and Chihuahua. Revised corridor evaluations have been sent to Texas and Chihuahua and are awaiting final approval, and the evaluation for Tamaulipas is currently being revised and will be sent out by Wednesday, June 25.
- Regarding transportation projects:
- The BINS team has received a list of transportation projects from all ten states except Nuevo León. These projects will be compiled into a database and analyzed by the BINS team to gain an idea of funding levels along the different corridors. Also, the JWC will be able to examine project types/levels in order to choose a pilot project for Robert Czerniac's innovative finance study.
- Regarding collateral for the JWC Meeting in July:
- The attendees decided on furnishing approximately 20 compact discs (with executive summaries on the CD's), 20 executive summaries (paper copies), 75 copies of the PowerPoint presentation, and SourcePoint promotional items.
- Regarding the Presentation Strategy:
- The attendees advised that the presentation should tie in other components of the JWC meeting and also show the relationship between the BINS study and the Binational Programming and Planning study.
- Regarding the JWC's vote on the Proposed Resolutions:
- Lisa Dye [Federal Highway Administration] expressed the need to adequately prepare JWC members for the upcoming Resolution vote. Several members do not have Technical Committee representation and are not aware of the BINS study or the upcoming vote on the Proposed Resolutions. A memo describing the situation will be sent by SourcePoint to the JWC coordinators, Sylvia Grijalva [Federal Highway Administration] and Oscar Ringenbach [Mexican Secretariat of Communication and Transportation]. Sylvia and Oscar will then brief the JWC members about the course of the BINS project and the vote on the Proposed Resolutions at the JWC meeting.

Follow-up

- The BINS team will prepare an executive summary and a PowerPoint Presentation by the next JWC preparation meeting (July 2) for review.
- SourcePoint will produce and send a memo to update JWC members [only those who do not have Technical Committee representation] about the vote on the Proposed Resolutions July 10-11.

Attendees - At Meeting

California Department of Transportation [Caltrans]

- Mark Baza
- Sergio Pallares

SourcePoint

- Marney Cox
- Santiago Davila
- Amir Masliyah
- Michael Williams
U.S. Federal Highway Administration
- Lisa Dye

MINUTES FROM THE SOURCEPOINT - CALTRANS: JWC PREP MEETING \#2 CONDUCTED JULY 2, 2003

Goals of Meeting

The purpose of the meeting: To prepare for the Joint Working Committee on July 10-11 in Mexico City. The attendees will review the handouts created by SourcePoint and critique Marney Cox's [SourcePoint] PowerPoint presentation.

Discussion

- Regarding the handouts for the JWC meeting:
- On the "READ ME" handout, the title to the Transportation Project Folder will be changed to reflect its relationship to the Corridor Evaluations. Also, the word "carpeta" will be changed to "archivo". One binder of Corridor Evaluations will be left at the JWC meeting in Mexico City for review.
- Regarding Executive Summary and PowerPoint presentation:
- The BINS team will verify what brought about the creation of the JWC; Sergio Pallares [Caltrans] suggested it came out of a FHWA Memorandum of Understanding titled "Operating Guidelines".
- Slides two and three will switch spots in the presentation, and the information in the "Background" slide will be discussed with the "Study Area" slide. Using the "Study Area" slide, the map will eventually fade and the study's objectives will come to the forefront and be discussed.
- The "Reaching Consensus" slide will be put in front of the "Methodology" slide, and the "Consensus" slide will focus less on a timeline and more on the spirit of consensus and what was agreed to. This slide will also include a brief summary about the composition of the Technical Committee for the JWC's clarification.
- On the "Relationship with Other JWC Projects" slide, the bullet "GIS Mapping" will be changed to "BGIS Mapping". Slide eight will be taken out, and the slide with New Mexico's map will then be in front of the "Relationship" slide.
- The "Expected Products" slide will be re-crafted in a way that aligns these products with the initial objectives of the study. The bullet "planning processes" will be deleted, and the bullets "maps" and "transportation project database" will be switched.
- The slides that deal with the Vote on the Proposed Resolutions will be moved to the end of the presentation, and a high level summary of the 11 step process will be integrated into the presentation (in between the "Resolution \#1" slide and "Resolution \#2" slide).
- The "Accomplishments" slide will be merged with the "Expected Products" slide. The bullet points about Texas' truck data and "minor modifications" will be taken out of the "Work To Do" slide. On this slide, the bullet point "project analysis" will be inserted.

Follow-up

- The BINS team will make the necessary changes to the executive summary and PowerPoint Presentation, and CD's will be made.
- All travel and logistical arrangements will be coordinated in advance of the July 10-11 JWC Meeting in Mexico City.

Attendees

California Department of Transportation [Caltrans]

- Mark Baza
- Trent Clark
- Jose Ornelas
- Pedro Orso
- Sergio Pallares

SourcePoint

- Marney Cox
- Santiago Davila
- Amir Masliyah
- Michael Williams
U.S. Federal Highway Administration
- Lisa Dye

MINUTES FROM THE SOURCEPOINT - CALTRANS MEETING CONDUCTED JULY 29, 2003

Goals of Meeting

The purpose of the meeting: To critique the Table of Contents for the BINS California Draft Report created by SourcePoint; to discuss the creation of maps; and to review the approval process for the BINS final report.

Discussion

- Regarding the JWC meeting in July:
- The possibility of extending the contract for BINS into a Phase II was discussed. This Phase II would further develop the corridor identification methodology and it would incorporate factors such as environmental concerns, safety concerns, and net economic benefits. The issue of disparity between corridor characteristics (i.e. AADT) was also discussed.
- Regarding the BINS Draft Report:
- The section on 'Differences Between US \& Mexican Transportation Planning' will be reviewed by the appropriate government organizations for approval. Information on transportation 'Programming' will also be incorporated into this section.
- There was discussion about the possibility of creating a funding category for all of the projects that have NO cost figures. These projects would be interpreted as projects that require an initial investment for planning and development.
- On the 'Needs Assessment of Border Region \& Infrastructure' section, the word 'Municipios' will be introduced as a way of representing the counties south of the border.
- On the 'Needs Assessment of Border Region \& Infrastructure' section, the word 'Municipios' will be introduced as a way of representing the counties south of the border. SourcePoint will create a section under the 'Background \& the BINS Project' to discuss the economic benefits of trade among the border region. SourcePoint will also put emphasis in the creation of the Executive Summary. This summary will explain, in great detail, the major categories that make up the BINS project, including the major findings, the corridor evaluations, U.S and Mexican Federal Legislation, and funding opportunities. It was suggested that the Executive Summary should be able to 'stand alone'.
- Under the 'Project Funding Opportunities' section, a section on 'Major disconnects between the Mexican and U.S. planning processes' will be added after each country's planning process is explained.
- The 'Legislative Provisions' sections will deal with topics like: Revenue allocation among the border region, homeland security, border technologies, and the possible creation of a 'trust fund' in Mexico that would be used to pay for transportation projects.
- Regarding the California Draft Report:
- The title of the report will read 'California/Baja California Report'. The topic on differences in corridor definition and interpretation between Baja and California will be addressed as an initiative, from both states, to acknowledge these differences and the willingness from
both states to work around these separate views to encourage continuous binational planning efforts.
- Under the section 'Major Finding from the Corridor Evaluations', the word 'Compare' will not be used; instead, the title will read 'California and Baja California Corridors'.
- In general, the California/Baja California Report will concentrate on topics that explain, with great detail, the differences between each state's planning and programming processes. This report will also investigate issues dealing with local funding mechanisms, detail highway data analysis, and any other type of information that can provide a clear view of the border transportation infrastructure in both border-states.
- Regarding Mapping:
- SourcePoint will review the POE maps to make sure that the Mexican POE names are correct. SourcePoint will study the possibility of attaching numbers to the POEs and then providing names to these numbers on a separate legend.
- Caltrans is in the process of creating cargo/trucks distributions maps within California and from California to the other states. Caltrans is interested in including these maps in the California/Baja California report.
- Regarding Process of Approval of the Final Report:
- SourcePoint will contact the state technical representatives during the week following September 18th in order to collect comments and answer any questions that may arise. SourcePoint will also mail courtesy draft reports to Lisa Dye and Sylvia in September 18.

Follow-up

- SourcePoint will write a letter to Caltrans requesting an extension of the BINS project contract until June 2004. The current contract expires December 2003 but the JWC meeting is scheduled for February 2004, therefore, an extension is needed to accommodate the next JWC meeting.
- SourcePoint will send the 'Differences between US \& Mexican Transportation Planning' document to Oscar Ringenbach (SCT) for review and comment.
- SourcePoint will obtain a copy of the SCT's presentation at the July 10 JWC meeting in Mexico City.
- SourcePoint will contact Roger Petzold in order to obtain a map that shows the corridors connecting U.S. with Canada and Mexico.
- Caltrans will provide SourcePoint with the contact information for Dennis Linskey who has a Map containing the proper locations of all POE on the US-Mexico border. Once SourcePoint has Mr. Linskey's coordinates, SourcePoint will contact him and request a copy of the map so it can be used in the BINS report.
- Caltrans will review and provide feedback on a few of the maps created for the BINS report.

Attendees

California Department of Transportation [Caltrans]

- Mark Baza
- Trent Clark
- Sergio Pallares

SourcePoint

- Marney Cox
- Santiago Dávila
- Michael Williams

Baja California

- Carlos López

SOURCEPOINT - CALTRANS/BGIS MEETING MINUTES

Dates:

December 16, 2002
August 1, 2003

MINUTES FROM THE SOURCEPOINT - CALTRANS/BGIS MEETING CONDUCTED DECEMBER 16, 2002

Goals of the Meeting

The main goal of this meeting is for BGIS [Bi-National Border Geographic Information System] to give a project status update to the BINS committee.

- Regarding the BGIS project:
- Diane Pierzinski, the BGIS project manager [California Department of TransportationCaltrans], began the meeting by stating that the main objective of the BGIS project is to create an interactive GIS structure for the border region (10 border-states). Diane [Caltrans] explained that there are two main applications that will develop from the BGIS project:

1) An application where the border data will become available to the public in a web format. This application will provide some kind of technical assistance and can be used by the general public, planners etc.
2) A more detailed application that can be used in conjunction with the BINS project. BGIS will create a mode/spatial-location relationship that will be used, later on, by the BINS team for different project tasks (i.e. plotting and selecting projects).

- Regarding project deadline and BINS clarification:
- Diane mentioned that she hoped to have the BGIS project completed by OCTOBER 2003.
- The University of New Mexico has joined the BGIS project, helping in the revision of border layer data across the entire border.
- Diane's perspective of the BINS project was that projects and their spatial location were the main objectives. BINS explained that projects were a subset of the most important task, which is the spatial location of corridors along the border.
- Regarding BGIS project obstacles:
- Diane mentioned that she has not received a great deal of cooperation from south of the border. She is hoping that each of the six Mexican border-states will provide the conversions needed for the already existing layer data. In conjunction with the U.S. data, this data will be used for the creation of the BGIS structure.
- Diane pointed out that all ten border-states have agreed on a similar Identification format for airports, seaports, POEs, and railroads. However, each state has a different identification format for highways and roads, making it difficult to form a unified relationship for the data across all ten border-states.
- Also, providing technical assistance to the Mexican states for the collection of GIS data doesn't seem to be part of the BGIS scope of work.
- Diane mentioned the possibility that Mexican data will come from the federal government. She pointed out that individual border-states look up to the federal government when asked to release data for the BGIS project. This can present a problem since the federal government tends to have a different perspective/objective compared to the individual border-states in the development of transportation infrastructure.

Follow-up

- Diane Pierzinski will provide SANDAG with the developments of the BGIS project.
- Michael Williams will provide Mark Woodall with Arizona project data.

Attendees

California Department of Transportation [Caltrans]

- Mark Baza
- Trent Clark
- Maurice Eaton
- Barbara Kent
- Chad Lambirth
- Sergio Pallares
- Diane Pierzinski

SourcePoint

- Marney Cox
- Santiago Dávila
- Michael Williams

San Diego Association of Governments [SANDAG]

- Steve Kunkel
- Mark Woodall

MINUTES FROM THE SOURCEPOINT - CALTRANS/BGIS MEETING CONDUCTED AUGUST 1, 2003

Goals of Meeting

The main goals of the meeting are the following:

- To explore the existing BGIS [Binational Border Geographic Information System] and BINS databases and review their compatibility
- To better understand the current mapping capabilities of BGIS.

Discussion

- Regarding the BGIS Databases:
- Mathew Rich [New Mexico State] reported that there are missing GIS attributes with both the US and Mexican GIS data. However, all of the problems and missing attributes are "solvable".
- New Mexico State is waiting for funding from the Federal Highway Administration to extend the BGIS project to the entire border region. Mathew Rich and New Mexico State are currently working only for the New Mexico Department of Transportation.
- Regarding the BINS Databases:
- The BINS corridor database consists of a series of questionnaires, all of which are Excel spreadsheets. The spreadsheets for each state are not linked together in a way that allows the data to be used by GIS software.
- There is also a transportation project related database, and this data is contained in Excel spreadsheets.
- Mathew Rich described the need to reformat this data into a form that can be utilized by GIS. He also pointed out that geographical representation of the post miles would be helpful in plotting project data.
- Regarding Mapping:
- SourcePoint will send the Excel spreadsheets to Mathew Rich after the completion of the BINS project.
- The BGIS project will convert the Excel spreadsheet into a GIS-usable data set.
- Lisa Dye [FHWA] will speak with Adrian Apodaca [New Mexico Technical Committee Representative] about this contract add-on.
- Mathew Rich [NM State] will review the area maps presented by SourcePoint and provide comments and suggestions.

Follow-up

- SourcePoint, Caltrans, and New Mexico State will remain in contact in the coming months as future plans to connect BINS and BGIS continue to take shape.
- Because GIS mapping of the Border States is not available from BGIS, BINS mapping will be done by artists at SourcePoint.

Attendees

California Department of Transportation [Caltrans]

- Mark Baza
- Sergio Pallares

SourcePoint

- Marney Cox
- Santiago Dávila
- Michael Williams

San Diego Association of Governments [SANDAG]

- John Hofmockel
- Steve Kunkel
- Mark Woodall
U.S. Federal Highway Administration
- Lisa Dye

New Mexico State University

- Mathew Rich

BINS TECHNICAL COMMITTEE MEETINGS MINUTES

Dates:

November 19, 2002
April 30, 2003
May 16, 2003
June 13, 2003
November 21, 2003

MINUTES FROM THE BINS TECHNICAL COMMITTEE MEETING CONDUCTED ON NOVEMBER 19, 2002

Goals of the Meeting

- The goal of the meeting is to develop a systematic methodology that uses quantifiable criteria to identify major transportation corridors. Ultimately, the systematic and quantifiable process may be used in the reauthorization of TEA 21 funds. To be used in this manner, the states along the US-Mexico border need to agree on a set of criteria and a methodology to assess the transportation corridors. If successful, this approach may help ensure a leadership role for states in the funding reauthorization process. The main goal of this meeting, then, is for the Technical Committee to APPROVE the process of arriving at a methodology to select corridors

Discussion

- Regarding the differences between transportation planning and programming between Mexico and the United States:
- Sergio Pallares [California Department of Transportation - Caltrans] stated that there is a highway transportation fund that pays for highway projects in the US, while in Mexico there is none. He wants to include this difference in the planning and programming process section of the BINS report.
- Carlos Lopez [Baja California Secretaría de Asentamientos Humanos y Obras Públicas - SAHOPE] commented that in the past few years, Baja California has tried to participate in the process of decentralizing planning as they had the opportunity to implement federal projects, however, they did not receive funds to implement the projects. Consequently, they were obligated to return the projects to the federal government.
- Joaquin Barrios [Chihuahua Secretaría de Comunicaciones y Obras Públicas - SCOP] added that his state government has many disputes with the federal government because they want to build highways, however, the federal government does not allow it.
- Regarding project level data:
- Arnold Burnham [Arizona Department of Transportation - ADOT] stated that the Arizona State Transportation Improvement Plans [STIPs] concentrate specifically on big projects, without taking into account the need for maintenance of roads, which uses a significant portion of the annual budget.
- Larry Warner [US General Services Administration - GSA] stated that the GSA manages land Ports of Entry [POE] along the US-Mexico border. It was suggested that the POE should be included when studying the prioritization of projects and transportation needs.
- Regarding privatization:
- Arnold [ADOT] stated that Arizona has tried it but it has not worked well because there are many alternative corridors.
- Carlos [SAHOPE] stated that Baja California knows of many projects that have potential for privatization, but the federal legislation does not allow them to implement the process. The issues are the amount of ownership and investment the federal and state governments should have in these types of projects.
- Claude Cortez [México Secretaría de Comunicaciones y Transportes - SCT] stated that there are rules and legislation for ownership and construction of projects that do not allow for these types of agreements. States want to put money into certain highway projects, but they also want to receive some of the revenue coming from those highways (toll revenue), creating financial disagreements between levels of government.
- Regarding Corridor Analysis:
- Marney [SourcePoint] stated that SourcePoint will gather different criteria to evaluate corridors. However, the main objective of this meeting is to APPROVE the process of arriving at a methodology to select corridors. Marney pointed out the need to receive more US and Mexican studies that will provide additional guidance for developing the methodology.
- Marney [SourcePoint] reminded the committee that a technical memo would be sent by SourcePoint to the Technical Committee listing relevant studies and providing a recommend list of criteria.
- Claude [SCT] stated that the evaluation of corridors is usually done using a systematic methodology [95\% of the time]; however, in a few cases [5\% of the time] political issues dominate. The corridor between Mazatlan and Nuevo León is an example where political factors dominated. He also said that Mexico has a problem developing East-West corridors since there is not enough trade to support them. However, they need them. Consequently, he wants to introduce some criteria to make sure it supports the idea of East-West corridors.
- Joaquin [SCOP] stated that Chihuahua has North-South corridors but does not have EastWest corridors. He made a point that Chihuahua needs more East-West corridors due to its large geographical area.
- Sergio [Caltrans] pointed out that the data for the criteria should come from each state.
- Arnold [ADOT] stated that when the ADOT analyzes corridors, they gather special information on that corridor instead of relying on the Highway Performance Monitoring System [HPMS] database.

Sergio [Caltrans] proposed a resolution on a process to identify major transportation corridors. This "procedure" consists of:

- Identifying different studies that used "quantifiable" criteria.
- Comparing and identifying "common points" among the studies.
- Using the common points from the studies as the basis for the BINS CORRIDOR EVALUATION CRITERIA to be approved by the JWC with recommendation from the BINS TECHNICAL COMMITTEE.

The Technical Committee approved this resolution.

- Regarding project evaluation
- Arnold [ADOT] also stated that they have tried the Highway Economic Requirements System [HERS] and it didn't work - most likely because they used it for secondary roads, not highways. Further, Arizona's rapid development does not make highway project evaluation fit well with the HERS model framework.
- Mark Baza [Caltrans] also mentioned they would not be in support of using HERS. They wanted to use data more directly related to the criteria agreed on.
- Oscar Ringenbach [SCT] stated that the Mexican government uses a model similar to HERS for evaluating projects. They would also like to see the structure of HERS in order to
compare it with their model. Oscar also mentioned that the software program has been used by the World Bank and it is a cost-benefit analysis only used for highway projects.

The committee agreed on having the corridor data stored in EXCEL Spreadsheets.

Follow-up

- SourcePoint will distribute the Framework for completing the BINS project to all the members of the BINS Technical Committee [see Attachment 1].
- SourcePoint will send a Technical Memorandum to the Technical Committee listing relevant studies \& providing a recommend list of corridor criteria [to be sent February 28, 2003].
- SourcePoint will establish a meeting with Caltrans for December 5, 2002 to review main points for the Joint Working Committee meeting [completed].
- Arizona will send SourcePoint a flow chart describing the transportation planning process in Arizona [received].
- The SCT requested a copy of the HPMS table of contents in order to understand the type of data available in HPMS. Upon further discussion, it became clear that a number of agencies were interested in this, therefore, it is being sent to all the Technical Committee members [see Attachment 2].
- The SCT mentioned that they have a database that may contain information similar to what is contained in the HPMS database and they said they would provide a copy of this to SourcePoint.
- Arizona will send SourcePoint a study that compares HERS with other types of analysis [received].
- The SCT will send SourcePoint information on the model used to evaluate projects.
- December $5^{\text {th }}$ meeting with Caltrans to review Marney's presentation to the JWC [completed].
- Draft BINS report for December meeting of Joint Working Committee [completed].
- Joint Working Committee meeting, December 12 \& 13, 2002, Baltimore, MD [completed].

Attendees

California Department of Transportation [Caltrans]

- Mark Baza
- Sergio Pallares

SourcePoint

- Marney Cox
- Santiago Davila
- Michael Williams

San Diego Association of Governments

- Elisa Arias
- Hector Vanegas

Arizona Department of Transportation

- Arnold Burnham

Secretaria de Infraestructura y Desarrollo Urbano del Estado, SIDUE (ex-SAHOPE), BAJA CALIFORNIA

- Carlos López

Secretaria de Comunicaciones y Obras Públicas [SCOP], Chihuahua

- Joaquín Barrios

México Secretaria de Comunicaciones y Transportes [SCT]

- Claude Cortez
- Oscar Ringenbach
U.S. Federal Highway Administration
- Lisa Dye
- Sylvia Grijalva

US General Services Administration

- Larry Warner

MINUTES FROM THE BINS TECHNICAL COMMITTEE MEETING CONDUCTED ON APRIL 30, 2003

Goals of Meeting

To obtain opinions and suggestions from the BINS Technical Committee on several proposed resolutions and a completed corridor evaluation for Arizona - the first of 10 states that will be conducted along the US-Mexico border.

Discussion

- Regarding the Recommendation to the Joint Working Committee:
- This meeting will be the first of three meetings that will occur during the next two months. During these meetings we will review the corridor evaluations for each state.
- During the last meeting we will ask the Technical Committee to approve the resolutions. After the Technical Committee approves the resolutions, we will then recommend those resolutions to the Joint Working Committee in July 2003.
- SourcePoint received tentative approval to proceed knowing that a final decision will not be made until June.
- Regarding the Proposed Resolutions \# 1 and \# 2:
- SourcePoint presented the corridor evaluation example with no questions, suggestions, or comments from any representative.
- The reason there are more indicators in the border corridor selection criteria than in the actual corridor evaluation is because it was not possible to obtain all the criteria initially listed; therefore we used the data provided by most of the states.
- CALTRANS pointed out that we have not received any data from Coahuila and Sonora. Currently SourcePoint is allowing an extension (May $9^{\text {th }}$) for those states that want to provide any missing data.
- SourcePoint received tentative approval to proceed using the methodology (11-step process) and the criteria, knowing that a final decision will not be made until June.
- Regarding the Corridor Evaluation for Arizona:
- For the analysis of Arizona, the format of the results is that which will be used for all the border-states.
- SourcePoint received tentative approval to proceed using the Arizona Corridor Evaluation keeping in mind that there will be changes made to the format.
- Sonora expressed concern with the possibility that they may only have one corridor for their evaluation. SourcePoint reassured Sonora that a one corridor analysis did not decrease the efficiency of the results of the evaluation.
- Regarding the Database System Plan:
- One of the main purposes of creating the database system plan is to allow each state to maintain its own set of data and its own corridor evaluation tool.
- SourcePoint is in the process of creating corridor evaluation tools for each of the 10 states. This tool will be in the form of an Excel spreadsheet and will contain each state's unique
attributes [highways, airports, corridors, etc.]. While each tool uses the same methodology, the attributes and complexity will vary by state.
- SourcePoint will send each state the evaluation tool when it is complete. Each state can then conduct its own evaluation using the tool, and it can conduct the evaluation at its discretion.

Follow-up

- Texas will be sending additional data before the May 9th extension.
- SourcePoint will email the Technical Committee members details of the May 16 meeting as we distribute the corridor evaluations for California, Baja, New Mexico, and the revised version for Arizona. The meeting will take place in San Diego, CA, and the same conference call format will be used.
- SourcePoint will be requesting specific transportation project information from each of the border-states. This data will need to be turned in before the third corridor evaluation meeting with the Technical Committee in June.
- The next Joint Working Committee meeting is schedule for July 10-11 in Mexico City.

Attendees - At Meeting

California Department of Transportation [Caltrans]

- Mark Baza
- Sergio Pallares

SourcePoint

- Marney Cox
- Santiago Davila
- Amir Masliyah
- Michael Williams

San Diego Association of Governments

- Elisa Arias
- Hector Vanegas

Secretaria de Infraestructura y Desarrollo Urbano del Estado,
SIDUE (ex-SAHOPE), BAJA CALIFORNIA

- Carlos López
U.S. Federal Highway Administration
- Lisa Dye
- Sylvia Grijalva

Attendees - On the Telephone

Texas Department of Transportation

- Mary Deleon
- Fred Márquez

Secretaría de Urbanismo y Obras Públicas del Estado, COHUILA

- Adela Blanco
- Francisco Samora

Secretaria de Infraestructura Urbana y Ecológica (SIUE), SONORA

- Héctor García

Secretaria de Comunicaciones y Transportes (SCT), MEXICO CITY

- Oscar Ringenbach

MINUTES FROM THE BINS TECHNICAL COMMITTEE MEETING CONDUCTED MAY 16, 2003

Goals of Meeting

To obtain opinions and suggestions from the BINS Technical Committee on the following:

- Changes to the discussion portion of the proposed resolutions.
- The revised Arizona corridor evaluation and corridor evaluations for California, New Mexico and Baja California.

The second goal is to establish the date for the June BINS Technical Committee meeting.

Discussion

- Regarding the Status of the BINS Project:
- SourcePoint emphasized that the BINS project is a logical extension of Phase IV of the Binational Border Transportation Study.
- Coahuila provided data to supplement the data compiled by SourcePoint's, but Sonora provided no data whatsoever. As of May 16, there has been full participation from all the U.S. states and participation from five of the six Mexican [Sonora provided no data].
- Regarding the changes to the discussion section of the Proposed Resolutions:
- There were no changes made to the proposed resolutions and two minor wording changes to the discussion. The first change clarifies the number of indicators used for the land ports of entry evaluation [four corrected to five]. And in Step 10, text was changed to clarify how corridors are listed based on their scores.
- Regarding the Revised Corridor Evaluation for Arizona:
- SourcePoint outlined the format changes to the Arizona evaluation, and the Arizona representatives gave their approval of these changes. Thus, SourcePoint has completed the corridor evaluation for Arizona. Arizona will receive one additional week (a total of three weeks) to review the final version of the Arizona corridor evaluation.
- Regarding the Highway Summary and Corridor Evaluation for New Mexico:
- This section composed a large portion of the meeting. SourcePoint reviewed both documents in detail to ensure that the Technical Committee members understood the methodology for estimating weighted averages for AADT, capacity, and Level of Service.
- SourcePoint will provide an additional week (three weeks total for review) to allow New Mexico to examine the final version of the New Mexico Corridor Evaluation and provide questions or comments.
- Regarding the Baja California Corridor Evaluation:
- The Baja California corridor evaluation contains one more page than the other evaluations because additional space was needed for eleven corridors.
- The evaluation will be re-computed without allocation of truck traffic to the Central Camionera Garita corridor. A different road is used by trucks to enter the Otay Mesa POE, and this road will be created and integrated as a twelfth corridor.
- Regarding the California Highway Summary and Corridor Evaluation:
- The California Corridor Evaluation was reviewed but the California Highway Summary was not reviewed because the methodology and layout are identical to the New Mexico Highway Summary. There are minor errors that will be corrected.

Follow-up

- The next Technical Committee meeting will be held June 13th in San Diego, CA, and the same conference call format will be used.
- During this meeting, SourcePoint will request that the Technical Committee formally approve the proposed resolutions.
- SourcePoint is expecting transportation project information from each of the border-states to be submitted by May 30, 2003.
- The next Joint Working Committee meeting is scheduled for July 10-11 in Mexico City.

Attendees

California Department of Transportation [Caltrans]

- Mark Baza
- Sergio Pallares

SourcePoint

- Santiago Davila
- Amir Masliyah
- Michael Williams

San Diego Association of Governments

- Elisa Arias

Secretaria de Infraestructura y Desarrollo Urbano del Estado, SIDUE (ex-SAHOPE), BAJA CALIFORNIA

- Carlos López
U.S. Federal Highway Administration
- Lisa Dye

Attendees - On the Telephone

Arizona Department of Transportation

- Lupe Harriger

New Mexico Department of Transportation

- Adrian Apodaca

United States Federal Highway Administration

- Sylvia Grijalva

MINUTES FROM THE BINS TECHNICAL COMMITTEE MEETING CONDUCTED JUNE 13, 2003

Goals of Meeting

There are two goals for the meeting: to vote on and approve the Proposed Resolutions, and to review the corridor evaluations for the following states: Texas, Chihuahua, Coahuila, Nuevo León, Tamaulipas, Sonora, and Baja California (revised). Lastly, the attendees will discuss the Joint Working Committee meeting slated for July 10-11.

Discussion

- Regarding the Status of the BINS Project:
- SourcePoint reported that the BINS project is on schedule according to the timeline laid out by the Framework. Each state's corridor evaluation has been completed, and final approval for four of the evaluations has been obtained [as of June 23, final approval has been received for all ten states except Texas, Tamaulipas, and Chihuahua. Texas and Chihuahua are awaiting final approval, and the revised evaluation for Tamaulipas will be sent out by Wednesday, June 25]. SourcePoint expects to have all 10 evaluations finalized by the first week of July.
- In early May, the BINS team requested a list of transportation projects from all ten states, as well as GIS coordinates for the projects. [As of June 23, Nuevo León is the only state that has not yet provided transportation project data].
- Regarding the JWC Meeting in July:
- A PowerPoint presentation describing the BINS study will be delivered at the Joint Working Committee meeting in July. SourcePoint will also provide the final versions of all the corridor evaluations on a CD ROM, and a listing of all the transportation projects along the border region.
- Regarding the Vote on the Proposed Resolutions:
- There are two Proposed Resolutions that deal with the evaluation of transportation corridors. The first is an 11 step corridor evaluation procedure methodology, and the second deals with the criteria to be used in this 11 step methodology.
- There are eleven parties eligible to vote on the Resolutions. There is one vote for each of the ten states, and one vote for the Mexican Secretariat of Communications and Transportation [SCT]. All eleven voting representatives approved the Resolutions in written form prior to the meeting. During the conference call, nine of the eleven parties approved the Resolutions with an oral confirmation; Nuevo León and Sonora were absent.
- Regarding the Corridor Evaluation for Texas:
- SourcePoint outlined the General Description and Analysis of the Texas Corridor Evaluation, and presented major modifications that will be made. The Texas representative gave her approval of these revisions and agreed to the time frame for approving the Final Version of the Texas Evaluation [Friday, June 27th].
- Regarding the Corridor Evaluation for Chihuahua:
- SourcePoint outlined the General Description and Analysis of the Chihuahua Corridor Evaluation, and presented minor modifications that will be made. The Chihuahua representative gave his approval of these revisions and agreed to the time frame for approving the Final Version of the Chihuahua Evaluation [Wednesday, June 25th].
- Regarding the Coahuila Corridor Evaluation:
- SourcePoint outlined the General Description and Analysis of the Coahuila Corridor Evaluation. There were no modifications. The Coahuila representative agreed to the time frame for approving the Final Version of the Coahuila Evaluation [Friday, June 20th].
- Regarding the Nuevo León Corridor Evaluation:
- SourcePoint outlined the General Description and Analysis of the Nuevo León Corridor Evaluation. There were no modifications, and the Nuevo León representative was not present to agree to the time frame for approving the Final Version of the Nuevo León Evaluation [Friday, June 20th].
- Regarding the Tamaulipas Corridor Evaluation:
- SourcePoint outlined the General Description and Analysis of the Tamaulipas Corridor Evaluation, and presented major modifications that will be made. The Tamaulipas representative gave his approval of these revisions and agreed to the time frame for approving the Final Version of the Tamaulipas Evaluation [Monday, June 23rd].
- Regarding the Sonora Corridor Evaluation:
- SourcePoint outlined the General Description and Analysis of the Sonora Corridor Evaluation. There were no modifications, and the Sonora representative was not present to agree to the time frame for approving the Final Version of the Sonora Evaluation [Friday, June 20th].
- Regarding the Baja California Corridor Evaluation [revised]:
- The Final Version of the Baja California Corridor Evaluation was accepted by the Baja California Technical Committee Representative.

Follow-up

- The BINS team will be preparing for the next Joint Working Committee meeting scheduled for July 10-11 in Mexico City.
- Lisa Dye [Federal Highway Administration] will coordinate with Robert Czerniac at New Mexico State University in an attempt to obtain Mexican GIS data for the BGIS project.
- Oscar Ringenbach [Mexican Secretariat of Communication and Transportation] will provide Mexican Port of Entry project data, and this list will be verified with CABIN [Comisión de Avalúos de Bienes Nacionales].
- Michael Williams will interview Larry Warner of the General Services Administration to obtain a listing of projects planned at the US Ports of Entry along the US-Mexico border.

Attendees - At Meeting

California Department of Transportation [Caltrans]

- Mark Baza
- Sergio Pallares

SourcePoint

- Santiago Davila
- Amir Masliyah
- Michael Williams

San Diego Association of Governments

- Elisa Arias
- Héctor Vanegas

Secretaria de Infraestructura y Desarrollo Urbano del Estado, SIDUE (ex-SAHOPE), BAJA CALIFORNIA

- Carlos López Rodríguez
U.S. Federal Highway Administration
- Lisa Dye

Mexican Secretariat of Communication and Transportation

- Oscar Ringenbach

Attendees - On the Telephone

Arizona Department of Transportation

- Arnold Burnham

New Mexico Department of Transportation

- Adrian Apodaca

Texas Department of Transportation

- Mary DeLeon
- Alfredo Marquez

Secretaría de Urbanismo y Obras Públicas del Estado, Coahuila

- Adela Blanco

Secretaría de Urbanismo y Obras Públicas del Estado, Chihuahua

- Joaquín Barrios

Secretaría de Urbanismo y Obras Públicas del Estado, Tamaulipas

- Ernesto Delgado

MINUTES FROM THE BINS TECHNICAL COMMITTEE MEETING CONDUCTED NOVEMBER 21, 2003

Goals of Meeting

There are two goals for the meeting:

- To review summary of suggestions and comments on BINS draft final draft report
- To review the votes on the proposed resolution

Lastly, the attendees will discuss next steps and JWC meeting on February, 2004.

Discussion

- Regarding the Status of the BINS Project:
- SourcePoint reported that the BINS report is on its final stage of review. Once the Technical Committee approves the report, then a final copy will go to the JWC.
- SourcePoint will implement all changes, comments, and suggestion on the BINS final draft report provided by the Technical Committee. Before this, SourcePoint will create a matrix (see matrix below) that would list all comments and suggestions, as well as SourcePoint's responses to them. This document will enable all states to review their comments and approve their implementation.
- Regarding the JWC Meeting in February, 2004:
- A PowerPoint presentation describing the status of the BINS study will be delivered at the Joint Working Committee meeting in February.
- Regarding the Vote on the Proposed Resolutions:
- There is one proposed resolution where the Technical Committee reviews the final draft of BINS, and tentatively approves the draft for the JWC's approval and acceptance for distribution.
- There are eleven parties eligible to vote on the Resolutions. There is one vote for each of the ten states, and one vote for the Mexican Secretariat of Communications and Transportation [SCT]. Seven representatives approved the Proposed Resolution, while three of them required more discussion. One of them did not present their vote.
- Regarding the Comments from Tamaulipas:
- SourcePoint presented Tamaulipas' comments and suggestions. The representative from this state wasn't able to attend the conference call.
- Regarding the Comments from Chihuahua:
- SourcePoint presented Chihuahua's comments and suggestions. The representative from Chihuahua agreed that it was necessary that all other suggestions were implemented in order to have a full approval from his state.
- Regarding the Comments from Nuevo León:
- SourcePoint did not received any comments or suggestions from the technical representative. There is also a new technical representative and his name is Oscar Herrera. This state was the only state that did not provided.
- Regarding the Comments from Coahuila:
- SourcePoint presented the comments and suggestions from Coahuila. There were no additional comments from this state.
- Regarding the Comments from Sonora:
- SourcePoint did not receive any comments or suggestions from the technical representative.
- Regarding the Comments from Texas:
- SourcePoint presented the comments and suggestions from Texas. Mary DeLeon wanted more time to review the final draft. She also wanted to know if she could provide additional project data, in order to improve the analysis.
- Regarding the Comments from New Mexico:
- SourcePoint presented the comments and suggestions from New Mexico. Adrian wanted to correct some of the corridor data in order to maintain continuity with Texas' corridors.
- Regarding the Comments from Arizona:
- SourcePoint did not receive any comments or suggestions from the technical representative.
- Regarding the Comments from Baja California:
- SourcePoint presented the comments and suggestions from Baja California. Carlos Lopez would like to resolve some data inconsistencies with the SCT.
- Regarding the Comments from California:
- SourcePoint presented the comments and suggestion from California. Caltrans provided detailed comments in written and text form. SourcePoint will work closely with Caltrans in order to implement these changes.
- Regarding the Comments from SCT and FHWA:
- SourcePoint presented the comments and suggestions from the SCT and the FHWA. Sylvia provided oral and written comments during the meeting. The SCT would like to discuss some data inconsistencies with Baja California.

Follow-up

- The BINS team will develop a matrix (see below for matrix) with all the comments and suggestions. During the time it takes to develop the matrix, states can provide further comments and revisions. Once the matrix is mailed out, no more comments or suggestions will be allowed. The changes will be implemented and a copy of the report will be mailed out to the representatives.
- The states of New Mexico and Texas would let us know the outcome of the discussion about corridor and the continuity of these from state to state. The state of Baja California and the SCT will resolve some POE project issues and inform us their decision.
- December 3rd is the last day states can turn in suggestions or comments on the BINS report.

Attendees - At Meeting

California Department of Transportation [CALTRANS]

- Mark Baza
- Sergio Pallares
- Trent Clark
- Beth Landbam

SourcePoint

- Santiago Davila
- Elisa Arias
- Marney Cox

San Diego Association of Government

- Héctor Vanegas
U.S. Federal Highway Administration
- Lisa Dye

Mexican Secretariat of Communication and Transportation

- Oscar Ringenbach

Attendees - On the Telephone

Arizona Department of Transportation

- Lupe Harriger

Texas Department of Transportation

- Mary DeLeon

New Mexico Department of Transportation

- Adrian Apodaca

Texas Department of Transportation

- Mary DeLeon
- Alfredo Marquez

Secretaría de Urbanismo y Obras Públicas del Estado, COHUILA

- Adela Blanco

Secretaría de Urbanismo y Obras Públicas del Estado, Chihuahua

- Joaquín Barrios

U.S. Federal Highway Administration

- Sylvia Grijalva

BINS
Matrix of Comments Received on Draft Final BINS Reports and Proposed Responses

$\begin{gathered} \text { Comment } \\ \text { No. } \end{gathered}$	Statel Organization	Comment/Suggestion	SourcePoint's Response	Status
1.	Arizona	Arizona did not provide any comments or suggestions on the draft final reports.	No response needed.	X
2.	Baja California	Baja California requested a revision the Port of Entry (POE) Project table (page 27) of the Executive Summary. One of the projects (Las Americas) was not recognized by the state government of Baja California and another POE project was missing.	SourcePoint proposes to eliminate the table from the Executive Summary because several states found the POE table confusing (i.e., it did not clearly explain the relation between U.S. and Mexican projects) and there is not sufficient information to describe the projects.	X
3.	Baja California	Baja California and SCT sent a table with POE projects to revise the table included on page 626 of the appendices.	SourcePoint will update the table in the appendix.	X
4.	California	California likes the logo but is concerned about the distortion of the national flags and requested SourcePoint check with the Mexican Consulate.	SourcePoint verified that artistic flags have been used at events co-sponsored by the Mexican Consulate and no issues were raised.	X
5.	California	California would like to introduce the concept that Border Departments of Transportation (DOTs) are bearing most of the responsibility for improving a transportation infrastructure that serves international trade which benefits national economies (on pages 3-5 of the executive summary). TEA-21 additional funding was not enough.	SourcePoint request concurrence on this statement from the BINS Technical Representatives prior to including it in the BINS report.	X
6.	California	California pointed out that on Footnote 3; Mexican primary federal highways run north-south and do not begin and end in Mexico City.	SourcePoint will correct this footnote.	X
7.	California	California would like the Executive Summary to more specifically address the study purpose and the objectives (page 5), as clearly as possible.	SourcePoint will restructure the Executive Summary and provide a revised copy to the BINS Technical Committee for review.	X
8.	California	California would like the objectives (page 5 of Executive Summary) to be numbered for easier identification.	SourcePoint will make this change.	X

Comment No.	Statel Organization	Comment/Suggestion	SourcePoint's Response	Status
9.	California	California would like the following changes applied to the objectives: a. $2^{\text {nd }}$ Objective would read "To establish a live binational border-wide database....to evaluate current and new transportation corridors and projects..." b. $3^{\text {rd }}$ Objective, substitute "identify" by "consolidate" c. Add two additional objectives: 5th Objective: "To identify current and projected funding needs in the binational borderwide region". 6th Objective: "To provide a binational border-wide tool for the JWC to update the future assessment of transportation infrastructure at the border region."	SourcePoint will clarify the language of the objectives. Under objective No. 2, the objective was to evaluate transportation corridors but not projects.	X
10.	California	California mentioned that the conclusions (page 10) need to highlight impacts of the trade and population data introduced to the border transportation infrastructure. Issues like increase in cross-border delays, impacts on infrastructure and state/local dots budgets, environmental impacts, etc.	SourcePoint will review and revise that section.	X
11.	California	California would like to delete or provide more substantive comments on the first paragraph of the Background section (page 12 of the Executive Summary).	SourcePoint will reword the paragraph.	X
12.	California	California questioned the use of highlighting, at the Executive Summary level (pages 17 and 18) some facts about the corridors, which appear to be irrelevant.	SourcePoint will restructure the Executive Summary and remove some of the detailed information.	X
13.	California	California asked what the criteria are for a corridor to be included in BINS (page 13).	SourcePoint will move up the criteria (within 100 km of the border and serve a POE), which is listed in the second paragraph.	X
14.	California	California asked if there were criteria for a "project" to be included in BINS (page 21).	SourcePoint included these criteria in the first paragraph, but will highlight it (...significant projects on major transportation corridors	X

Comment No.	Statel Organization	Comment/Suggestion	SourcePoint's Response	Status
			lanned for the next 20-years).	
15.	California	California requested to create a graph of the type of information provided in page 21 of the Executive Summary (paragraphs $1^{\text {th }}, 2^{\text {nd }}, 3^{\text {rd }}$, and $4^{\text {th }}$).	SourcePoint will restructure the Executive Summary and evaluate providing additional graphics.	X
16.	California	California mentioned that on page 12 and others, relative numbers should be inserted in a parenthesis following the absolute numbers.	SourcePoint will consolidate absolute numbers and percentages as appropriate.	X
17.	California	California requested to highlight the level of effort of border DOTs and local agencies to fund border infrastructure, and maybe compare it to the level of dedicated funding received.	SourcePoint will update Table 2 (page 29) to provide federal dedicated funding allocations for 1999-2003, instead of 2001 only. The BINS project did not compile historical information on state and local agencies funds provided for border transportation projects.	X
18.	California	California mentioned that pages 21 to 24 are the heart of BINS. This section needs more detail and information and it needs to be easier to read.	SourcePoint will present identified funding needs based on the data provided by the states for projects on key corridors in the Overview of the Border Region section. SourcePoint will move that information to the beginning of the U.S. and Mexico sections for additional clarity.	X
19.	California	California pointed out that the POE table (page 27) needed to be revised.	SourcePoint proposes to eliminate the table from the Executive Summary because several states found the POE table confusing (i.e., it did not clearly explain the relation between U.S. and Mexican projects) and there is not sufficient information to describe the projects.	X
20.	California	California mentioned that the way information is presented (page 28) is weak. Funding is not top down; it is by National-State formula (Highway Trust Fund). States and MPOs decide funding priorities.	SourcePoint will review and revise as appropriate.	X

Comment No.	State/ Organization	Comment/Suggestion	SourcePoint's Response	Status
21.	California	California requested to know why BINS concentrated on CBI-NCPD for the year 2001 only. They requested to see the entire funding picture.	SourcePoint will update Table 2 (page 29) to provide federal dedicated funding allocations for 1999-2003, instead of 2001 only.	X
22.	California	California mentioned that the General Conclusions should further summarize and reiterate what has been said so far.	SourcePoint will review and revise the General Conclusions in order to satisfy the suggestions presented.	X
23.	California	California believed this section (page 6, Executive Summary, Organization of the Report) could be condensed.	SourcePoint will review the text and will make changes accordingly.	X
24.	California	California pointed out that (page 9 of the Executive Summary) annual trade by truck and rail in 2002 accounted for $\$ 192$ billion, while on page 7, the text says annual trade in 2002 was $\$ 232$ billion.	SourcePoint did not implement any changes because the figures on page 9 are for truck and rail only, as specified. The figure on page 7 is TOTAL ANNUAL TRADE.	X
25.	California	California suggested that pages16 through 20 should be summarized and graphs should be included.	SourcePoint will look into this and changes will be implemented.	X
26.	California	California mentioned that the municipios (counties) of Rosarito and Ensenada should be included in Map 2 on page 10.	Map 2 only shows municipios that are adjacent to the U.S./Mexico border. No change is needed.	X
27.	California	California requested that Map 3, page 11, shows the San Ysidro and Otay Mesa POE names listed in order from west to east.	SourcePoint will implement this change.	See Lori
28.	California	California pointed out that the study report on page 16 indicates a total of $\$ 190$ billion while page 10 presented a total of $\$ 170$ billion for U.S.-Mexico trade in 2000.	The figures on page 16 (\$190 billion) include both truck and rail trade, while the total on page 10 ($\$ 170$ billion) represents truck trade only, as indicated in the text. No change is needed.	X
29.	California	California mentioned that the study report was too technical. California requested to eliminate some numerical analyses and consolidate the information.	SourcePoint will review and revise sections of the report to improve readability.	X
30.	California	California would like the "Steps Employed to Achieve Consensus" (Page 32 of the study report) be moved to an Appendix.	SourcePoint will summarize the steps in the report.	X

Comment No.	Statel Organization	Comment/Suggestion	SourcePoint's Response	Status
31.	California	California pointed out that the information is duplicated on pages 51 and 52 of the study report.	Page 51 provides the analysis for Current Conditions while page 52 provides the analysis for Projected Change. No change is needed.	X
32.	California	California provided a more detailed map with the description of California's two corridors.	SourcePoint will use this map to enhance the map in the report.	X
33.	Chihuahua	Chihuahua requested a correction in the length of the airport runways (page 56 of the main report).	SourcePoint will correct the length of the runways appropriately.	X
34.	Chihuahua	Chihuahua requested corrections to the state's corridor map (page 57 of the main report). Chihuahua requested consistency in the names of the corridors on the state map and the text.	SourcePoint revised the corridor names in the map and will send it by e-mail to Chihuahua for review.	X
35.	Coahuila	Coahuila asked why the Piedras Negras and the Acuña airports were not shown on the map of major seaport and airport facilities.	SourcePoint explained to the technical committee representative from Coahuila that data on those two airports were not provided. Only those airports where data were provided were included in the corridor analysis of the states.	X
36.	Coahuila	Coahuila pointed out a mistake in the spelling of Piedras Negras in the reports.	SourcePoint will correct the misspellings.	X
37.	Coahuila	Coahuila requested the name of the El Melon - La Linda corridor be changed to Boquillas del Carmen Múzquiz.	SourcePoint will change the name of the corridor wherever it applies.	X
38.	New Mexico	New Mexico requested the data collected to be made more complete. The technical representative felt that there were many indicators that were missing data and other indicators that could be introduced in the evaluation.	SourcePoint evaluated the data that was provided by the New Mexico technical representative. Additional data was requested, but it was not provided. The methodology, the indicators and corridor evaluation were approved by New Mexico on June 23, 2003 and by the JWC on July 10, 2003.	X

Comment No.	Statel Organization	Comment/Suggestion	SourcePoint's Response	Status
39.	New Mexico	New Mexico pointed that corridors within the study need more continuity; as some states chose only a few corridors, while other states chose many corridors.	The corridor selection methodology approved for the BINS project called for each state to identify its own transportation corridors, based on approved selection criteria.	X
40.	New Mexico	New Mexico pointed out that the database created for the BINS study is not compatible with the Border GIS (BGIS) project.	SourcePoint recognizes that both databases are not compatible. The BGIS study began after the BINS database had been created.	X
41.	New Mexico	New Mexico would like to replace the text (page 596) of the appendices to read "Governor Richardson's Investment Partnership."	SourcePoint will implement this change.	X
42.	New Mexico	New Mexico would like to delete the project (page 596 of appendices): "NE Parkway Loop, 4-lane divided highway 2015."	SourcePoint will implement this change.	X
43.	New Mexico	New Mexico would like to replace the following text (page 354 of appendices): Reword the $2^{\text {nd }}$ sentence. It currently reads: "It is envisioned that a new land POE will open about five miles east of Santa Teresa at Sunland Park around 2020." to say the following: "The City of Sunland Park is proposing a new, non-commercial POE to be opened about five miles east of Santa Teresa." New Mexico would also like to delete the following sentence: "The primary role for this new POE is the movement...."	SourcePoint will implement these changes.	X
44.	New Mexico	New Mexico would like to reword the first sentence (page 355 of the appendices): Delete "plan" and replace with "proposal". It would read: There is a proposal to move the rail crossing that currently crosses the international boundary between downtown Juarez, Mexico and El Paso, Texas to the Santa Teresa POE in New Mexico. New Mexico would also like to reword the $2^{\text {nd }}$ sentence to read: This is proposed to occur during the next 20 years.	SourcePoint will implement these changes.	X

Comment No.	Statel Organization	Comment/Suggestion	SourcePoint's Response	Status
45.	Nuevo Leon	Nuevo Leon did not provide any comments or suggestions on the draft final reports.	No response needed.	X
46.	Sonora	Sonora did not provide any comments or suggestions to the BINS project team.	No response needed.	X
47.	Tamaulipas	Tamaulipas requested the Port of Entry (POE) Project table (page 27) of the Executive Summary be revised. The list of POE projects did not represent the correct projects recognized by the state.	SourcePoint proposes to eliminate the table from the Executive Summary because several states found the POE table confusing (i.e., it did not clearly explain the relation between U.S. and Mexican projects) and there is not sufficient information to describe the projects.	X
48.	Tamaulipas	Tamaulipas requested to discuss the location of the Nuevo Leon corridor. Tamaulipas mentioned that the Nuevo Leon corridor passed through Nuevo Laredo, in Tamaulipas, before connecting to Monterrey.	SourcePoint revised Map17 to show highway MX-2 and MX-85 on the Nuevo Laredo corridor in Tamaulipas. In the State of Nuevo León, the MonterreyColombia corridor includes highway NL-01 only.	X
49.	Tamaulipas	Tamaulipas pointed out that the map in the Executive Summary that shows the major seaport and airport facilities did not include the port of Mezquital, on the Gulf Coast of Tamaulipas.	SourcePoint will revise the map to include the port of Mezquital.	X
50.	Tamaulipas	Tamaulipas pointed out a few discrepancies with the state corridor map (page 70 of the main report). Most of the discrepancies dealt with color coding of the transportation corridors.	SourcePoint implemented the changes to the map and will send it by e-mail to Tamaulipas for review.	X
51.	Texas	Texas asked why there were so many blank spaces on the Port of Entry (POE) Project table (page 27) of the Executive Summary.	SourcePoint proposes to eliminate the table from the Executive Summary because several states found the POE table confusing (i.e., it did not clearly explain the relation between U.S. and Mexican projects) and there is not sufficient information to describe the projects.	X

Comment No.	Statel Organization	Comment/Suggestion	SourcePoint's Response	Status
52.	Texas	Texas requested corrections to the description of land POEs (Page 73 of the report and page 496 of the appendices). No busses or passenger vehicles cross through Stanton or the World Trade Bridge POEs.	SourcePoint will make these corrections.	X
53.	Texas	Texas requested the heading "Project Data Issues" (page 96) of the report be clarified so it does not appear that they were Texas' project data issues.	SourcePoint will change the heading to "BINS Data Issues Related to Projects.	X
54.	Texas	Texas requested the report (page 73) and the appendices (page 496) mention that Tex Mex railroad interchanges with TFM at Laredo II POE. They also requested to add a comment to the fact that the Presidio POE rail crossing will re-open in 2004, which may potentially affect rail traffic at El Paso POE.	SourcePoint will add this information.	X
55.	Texas	Texas requested to revise the International Bridge and Border Crossing Map (in the Executive Summary). Revise \#29 Dolores (Solidarity) to read Laredo Colombia (Solidarity); revise \#31 Laredo (Convent Street) to read Laredo (Gateway to Americans Bridge); and revise \#21 Tornillo to read Fabens (Tornillo Application is still in the Presidential Permit process).	For all states, SourcePoint is using the international bridge and border crossing names recognized by DOS/CILA. Texas revisions will be shown in parentheses.	X

Comment No.	Statel Organization	Comment/Suggestion	SourcePoint's Response	Status
57.	Texas	Texas submitted a funded project list as requested, but did not submit a non-funded project list for the following reason: Texas was told that in addition to the GIS database creation, the non-funded projects were to be used as a master list for the JWC to select a pilot project to be funded as part of the Innovative Finance Project. At this point, TxDOT made a decision that the project submitted by Texas was to be selected and nominated by TxDOT's Administration.	SourcePoint has included the project list provided by Texas in the BINS project.	X
58.	Texas	Texas felt that the evaluation criteria concerning corridor selection was unclear. As the project moved forward, Texas had questions concerning the project methodology.	The evaluation criteria was reviewed (at the Technical Committee meeting on June 13, 2003) and approved by the Texas Technical Committee representative on June 27, 2003; and by the JWC on July 10, 2003. The evaluation criteria may be updated in future phases of the BINS project.	X
59.	FHWA	FWHA recommended the word "prosperity" be changed to "economic benefit" or similar (page 3 of Executive Summary, $3^{\text {rd }}$ paragraph).	SourcePoint will implement this change.	X
60.	FHWA	FHWA would like to include the Mexican perspective in the text (page 4 of the Executive Summary under the Background section).	SourcePoint will obtain background information from Mexican representatives to incorporate into this section.	X
61.	FHWA	FHWA commented on page 4 of the Executive Summary under the Background section - The DOS and SRE should be included as members of the JWC.	SourcePoint will implement this change.	X
62.	FHWA	FHWA commented on page 12 of the Executive Summary under Background section, first paragraph the last two sentences should be eliminated.	SourcePoint will implement this change.	X

Comment No.	Statel Organization	Comment/Suggestion	SourcePoint's Response	Status
63.	FHWA	FHWA commented on page 12 of the Executive Summary under Background section, last paragraph beginning at fourth sentence - this portion should be eliminated or rewritten because it is incorrect.	SourcePoint will review and revise this paragraph.	X
64.	FHWA	FHWA commented on page 21 of the Executive Summary - $3^{\text {rd }}$ paragraph the sentence that begins "This provides an indication..." Either eliminate or reword it or take it where conclusions are discussed.	SourcePoint will implement this change.	X
65.	FHWA	FHWA commented on page 28 of the Executive Summary - under Traditional Financing Sources in the US - Last two sentences should be reworded clearly stating the States responsibility and FHWA's responsibility.	SourcePoint will implement this change.	X
66.	FHWA	FHWA commented on page 29 of the Executive Summary - under Border and Corridor Grant Opportunities Last sentence should be eliminated.	SourcePoint will implement this change.	X
67.	FHWA	FHWA commented on page 30 of the Executive Summary - first sentence should be eliminated.	SourcePoint will implement this change.	X
68.	FHWA	FHWA commented on page 30 \& 31 of the Executive Summary - under the Innovative Financing section that this section is repetitive.	SourcePoint will revise to eliminate repetitive text.	X
69.	FHWA	FHWA commented that on page 31 of the Executive Summary the footnote is confusing. Suggested the following: Werner Frederick, FHWA "U.S./Mexico Joint Working Committee Innovative Finance team FY 2004 Work Plan Products", July 10, 2003.	SourcePoint will implement this suggestion.	X
70.	FHWA	FHWA commented on page 111 of study report - first paragraph Reword the second sentence to reflect the fact that FHWA and the other agencies are part of the DOT.	SourcePoint will implement this change.	X
71.	FHWA	FHWA commented on page 111 of study report - $2^{\text {nd }}$ paragraph - second sentence - the USDOS is responsible for the permitting process in the US,	SourcePoint will make this change.	X

Comment No.	State/ Organization	Comment/Suggestion	SourcePoint's Response	Status
		not for planning the locations of border crossings.		
72.	FHWA	FHWA commented overall that the Executive Summary should be more concise and to the point. It should clearly state what the findings are for the study. FHWA recommended that once the comments are incorporated and the executive summary is revamped, that the report be redistributed for review.	SourcePoint will restructure the Executive Summary and provide a revised copy to the BINS Technical Committee for review.	X

Comment No.	Statel Organization	Comment/Suggestion	SourcePoint's Response	Status
78.	FHWA	FHWA commented that more of the information contained in Chapter 6 of the study report should be incorporated in the Executive Summary.	SourcePoint will add more information from Chapter 6 into the Executive Summary.	X
79.	FHWA	FHWA would like the four main objectives of the study to say: 1) Develop an evaluation process and procedure to identify corridors - how was this done? 2) To establish a border-wide database that can be used. 3) To identify projects - beyond numbers of projects, what are the projects? New roads? Added capacity? 4) To identify funding	SourcePoint will clarify the language of the objectives.	X
80.	FHWA	FHWA would like the following issues to be discussed in the Executive Summary: 1) The evaluation process was good and was accepted by all 10 states - a very large accomplishment. 2) What does the database looks like? 3) What is the limitation of the database? 4) Is the format compatible with GIS? 5) If not, how can this be overcome? 6) How will the database be maintained? 7) How are projects going to be maintained? 8) What are some of the legislative changes that could be made that will assist funding? 9) What are some of the innovative ways to fund?	SourcePoint will restructure the Executive Summary to address these suggestions, based on available data.	X
81.	FHWA	FHWA mentioned that the Executive Summary is too wordy and too general. It should discuss issues such as: 1) Will this process help decision makers decide where to fund? 2) Can I identify the first ranked corridor for each state, find projects on that state and make decisions?	SourcePoint will restructure the Executive Summary to address this comment.	X

Comment No.	Statel Organization	Comment/Suggestion	SourcePoint's Response	Status
	3)How do I use the BINS project and database?			
82.	FHWA	FHWA would like to define the term "Major Seaports and Airports" and "Major Railroads" on page 13 of the Executive Summary.	SourcePoint will provide these definitions.	X
83.	FHWA	FHWA would like to see the distribution of CBI and NCPD money for the years 2002 and 2003 also (Table 2, page 29 of the Executive Summary).	SourcePoint has obtained data from 1999 through 2003 and will update Table 2.	X
84.	SCT	The SCT believes that the criteria for the evaluation of corridors need to be more selective.	SourcePoint concurs that additional criteria would be beneficial. However, the criteria for the evaluation of corridors were approved by the technical representatives in June 2003 and by the JWC in July 2003. Changes could be implemented in a future phase of BINS.	

X = completed

APPENDIX 7 BINS SURVEY INSTRUMENTS

PART 1- HIGHWAYS: ASSIGNING DATA TO CORRIDORS INSTRUCTIONS FOR COMPLETING THE HIGHWAYS QUESTIONNAIRE

INTRODUCTION

This is the first of five questionnaires intended to gather information about the transportation systems in your state. Each questionnaire is a separate Excel spreadsheet and each deals with a different topic [highways, ports of entry, airports, maritime ports and corridors]. The data obtained from these questionnaires will be used to analyze your state's transportation corridors.

Each state has agreed to provide SourcePoint with data for the Bi-National Border Transportation Infrastructure Needs Assessment Study [BINS] that is endorsed by the US-Mexico Joint Working Committee on Transportation Planning \& Programming.

For any queries contact Michael Williams at (619) 595-5646 or e-mail at mwi@sourcepoint.org.

DEFINITION OF TRANSPORTATION CORRIDOR

A combination of modes that move people, vehicles and goods from one location to another. In general, a transportation corridor is not just one road or rail line, but a combination of modes.

RETURN THE COMPLETED SPREADSHEET TO SOURCEPOINT

After inserting your responses into this spreadsheet, please return it to Michael Williams at SourcePoint [mwi@sourcepoint.org]. For any queries or uncertainties regarding the questionnaire, please call Michael Williams at (619) 595-5646.

Your timely response is greatly appreciated. Please return the completed spreadsheet by April 4, 2003.

See the "FAQ" tab for answers to frequently asked questions, and please provide comments or clarification in the "Notes" Tab.

INSTRUCTION FOR COMPLETING THE HIGHWAY QUESTIONNAIRE

In each highway tab, this questionnaire requests Average Annual Daily Traffic [AADT] by segment, for each highway, for the year 2000 and the assignment of those AADT to one or more Corridors. In addition, projected AADT for the year 2020 is also requested by segment, for each highway and it must be assigned to one or more Corridors. We also request the Level of Service [LOS], the volume of traffic, and the traffic-carrying capacity for each segment during morning/afternoon peak hours for the year 2000, and projections for the year 2020. All facilities must be within 100 km of the US-

Mexico border and serve an international Port of Entry. For each highway there are two minimum criteria questions and 16 other questions. Please insert your answers into this spreadsheet.

For each highway there is one tab to collect data for calendar year 2000, and another tab to collect the projections for the year 2020.

Hint: "Copy \& Paste" the segment data from your database to the excel spreadsheet to facilitate compilation. We want all of this data in electronic form. It is up to the state to specify the segments within a highway and it is up to the state to specify the corridors. Please verify the Corridors listed at the top of each highway form. If the form omits a Corridor, please insert the missing Corridor. Likewise, if you need to add segments, please insert them at the bottom of the form. If a highway is omitted, please insert it and use the forms in the "Other 2000" and "Other 2020" tabs. If a highway is not in operation today, but its construction and operation will occur between now and 2020, please add the highway in a new tab or use the "Other 2020" tab.

EXAMPLE TABS

There are two example tabs of how the questionnaires should be completed. The "Example 2000" Tab contains hypothetical data for Interstate $8[1-8]$ for the calendar year 2000 while the "Example 2020" Tab contains hypothetical projections for I-8 for the year 2020.

FREQUENTLY ASKED QUESTIONS [FAQ]: THE HIGHWAY QUESTIONNAIRE

1. What highways did SourcePoint provide in this spreadsheet?

Answer

Highway Names
2. Can we add highways to the list?

Answer

Yes
3. If I decide to add a highway, how do I do it?

Answer

Use the "Other 2000" tab and the "Other 2020" tab in the far right of the spreadsheet. If you add more than one highway, please insert tabs at the far right. In addition, please write in the "Notes" tab the highway additions you made.
4. Can we delete highways from the list?

Answer
Yes
5. If I decide to delete a highway, how do I do it?

Answer
Delete the appropriate tab in the spreadsheet. In addition, please write in the note tab the highway that you deleted.
6. What are the factors that would help us determine if a highway should be added or subtracted from the list?

Answer

Two items:
a. Whether the highway is within 100 km of the US-Mexico border
b. Whether the highway serves an international port of entry

7. What happens if I cannot obtain a specific bit of information for the questionnaire [forecasts, for example]?

Answer

Leave the space blank for the data you cannot obtain and write a note in the "Notes" tab explaining what is missing.
8. Who decides on the segments for each highway?

Answer

Your state does. We suggest accessing your database to obtain the specific segment data for each highway.
9. Do I have to "key in" each bit of segment data?

Answer

We suggest you "copy and paste" the data into this spreadsheet. If you make a request to your data processing department, ask them to provide the data elements in a spreadsheet, then you can easily copy them into the Highways questionnaire.
10. Can a highway be assigned to more than one corridor?

Answer

Yes, it is up to the state to decide which corridor or corridors, a highway belongs in. If a highway belongs in more than one corridor, it is up to you to determine the highway segments that are contained in each corridor.

11. Who can I contact for assistance?

Answer

Michael Williams, Telephone (619) 595-5646 or e-mail mwi@sourcepoint.org

COMPLETED EXAMPLE FOR INTERSTATE 8 WITH SOME PROJECTED DATA FOR CALENDAR YEAR 2020

DATA FOR CALENDAR YEAR 2000

DATA FOR CALENDAR YEAR 2020

Minimum Criteria:												
Are all the highway segments within 100 km of the US-Mexico border? [Y/N]								Y				
Does the highway serve an international Port of Entry? [Y/N]								Y				
For the quantifiable data, please complete the following table.								PLEASE SEE END OF FORM FOR FOLLOW-UP QUESTIONS				
	Specify the mile marker where the segment begins	Specify the mile marker where the segment ends	Specify the Average Annual Daily Traffic [AADT] for each segment	Specify the Level of Service [A to F] for each segment during the am/pm peak hours	Specify the traffic volume for each segment during the am/pm peak hours	Specify the segment capacity during the am/pm peak hours						
Segment \#	Begin Post Mile	End Post Mile	Average Annual Daily Traffic	Level Of Service	Peak Hour Traffic Volume	Peak Hr TrafficCarrying Capacity	$<=========$ AADT Assigned to Corridors $=========\gg$					
							A	B	C	D	E	F
1												
2												
3												
4												
5												
6												
7												
8												
9												
10												
11												
Follow Source Person Intermo Is this hig If yes, sp If yes, wh For Que	p Questions f data: HPMS Completing F dal facilities hway served cify the corrid at is the nam ies Regardin	database for orm (Name, a railroad th or in which th of the railro any Quest	ADT ontact informa rough an interm intermodal faci company? n in This Form	tion, Organiza dal facility? [ty is in: Please conta	on):Michael Michael Willi	Villiams, 619.5 ms at SourceP	T2,	Point $\text { ! } 5919 \text { (6) }$				

NOTES

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	

PART 2- LAND PORTS OF ENTRY: BORDER CROSSINGS INSTRUCTIONS FOR COMPLETING THE PORTS OF ENTRY QUESTIONNAIRE

INTRODUCTION

This is the second of five questionnaires intended to gather information about the transportation systems in your state. Each questionnaire is a separate Excel spreadsheet and each deals with a different topic [highways, ports of entry, airports, maritime ports and corridors]. The data obtained from these questionnaires will be used to analyze your state's transportation corridors.

Each state has agreed to provide SourcePoint with data for the Bi-National Border Transportation Infrastructure Needs Assessment Study [BINS] that is endorsed by the US-Mexico Joint Working Committee on Transportation Planning \& Programming.

For any queries contact Michael Williams at (619) 595-5646 or e-mail at mwi@sourcepoint.org.

DEFINITION OF TRANSPORTATION CORRIDOR

A combination of modes that move people, vehicles and goods from one location to another. In general, a transportation corridor is not just one road or rail line, but a combination of modes.

RETURN THE COMPLETED SPREADSHEET TO SOURCEPOINT

After inserting your responses into this spreadsheet, please return it to Michael Williams at SourcePoint [mwi@sourcepoint.org]. For any queries or uncertainties regarding the questionnaire, please call Michael Williams at (619) 595-5646.

Your timely response is greatly appreciated. Please return the completed spreadsheet by April 4, 2003.
See the "FAQ" tab for answers to frequently asked questions, and please provide comments or clarification in the "Notes" Tab.

INSTRUCTION FOR COMPLETING THE PORTS OF ENTRY [POE] QUESTIONNAIRE

In each Port of Entry tab, the questionnaire requests the number of north-bound border crossings by trucks, passenger vehicles, buses, rail cars and pedestrians for calendar year 2000 and projected north-bound border crossings for the year 2020. For each POE there is one minimum criteria questions and 10 quantifiable questions. Please insert your answers into this spreadsheet. In each POE tab the questionnaire also requests data on the volume of goods [in tons] transported across the border, and the value of the those goods [in dollars] transported across the border for calendar year 2000 and projections for calendar year 2020. If a land POE is omitted, please insert it and use the forms in the "Other POE."

EXAMPLE TABS

There is one example tab of how the questionnaires should be completed. The "Example POE" Tab contains hypothetical data for the Otay Mesa POE for the calendar year 2000 and projections for calendar year 2020.

FREQUENTLY ASKED QUESTIONS [FAQ]: THE POE QUESTIONNAIRE

1. What poe did SourcePoint provide in this spreadsheet?

Answer: POE Names
2. Can we add a port of entry to the list?

Answer: Yes
3. If I decide to add a poe, how do I do it?

Answer: Use the "Other POE" tab in the far right of the spreadsheet. If you add more than one POE, please insert a tab at the far right. In addition, please write in the "Notes" tab the POE additions you made.
4. Can we delete a poe from the list?

Answer: Yes
5. If I decide to delete a poe, how do I do it?

Answer: Delete the appropriate tab in the spreadsheet. In addition, please write in the note tab the POE that you deleted.
6. What happens if I cannot obtain a specific bit of information for the questionnaire [forecasts, for example]?

Answer: Leave the space blank for the data you cannot obtain and write a note in the "Notes" tab explaining what is missing.
7. Who can I contact for assistance?

Answer: Michael Williams, Telephone 16195955646 or e-mail mwi@sourcepoint.org.

COMPLETED EXAMPLE OF OTAY MESA POE WITH SOME

 HYPOTHETICAL DATA| Completed Example of Otay Mesa POE with Hypothetical Data | | | |
| :---: | :---: | :---: | :---: |
| Minimum Criteria | | | |
| 1 | Are federal inspection facilities at the POE? [Y/N] | Y | |
| | | Border Crossings | |
| | | Calendar
 Year 2000 | Projections For Calendar Year 2020 |
| Quantifiable Criteria | | | |
| 2 | Specify the number of north-bound trucks that cross the border into the United States [US] at this POE. | 280,000 | 500,000 |
| 3 | Specify the volume of goods [in tons] transported by the north-bound trucks that cross the border into the US at this POE. | 2,700,000 | 4,500,000 |
| 4 | Specify the value of the goods [in millions of dollars] transported by the north-bound trucks that cross the border into the US at this POE. | \$11,500.0 | \$23,000.0 |
| 5 | Specify the number of north-bound passenger vehicles that cross the border into the US at this POE. | 4,850,000 | 8,000,000 |
| 6 | Specify the number of north-bound buses that cross the border into the US at this POE. | 45,700 | 80,000 |
| 7 | Specify the number of north-bound rail cars that cross the border into the US at this POE. | 3,874 | 12,000 |
| 8 | Specify the volume of goods [in tons] transported by the north-bound rail cars that cross the border into the US at this POE. | 380,000 | 700,000 |
| 9 | Specify the number of twenty foot equivalent containers [TEU] transported by the north-bound rail cars that cross the border into the US at this POE. | 10,000 | 30,000 |
| 10 | Specify the value of the goods [in millions of dollars] transported by the north-bound rail cars that cross the border into the US at this POE. | \$215.1 | \$425.6 |
| 11 | Specify the number of north-bound pedestrians that cross the border into the US at this POE. | 670,000 | 3,000,000 |
| Check type of ton used to answer questions 3 \& 8
 Question 3: long ton $=2,240$ pounds [], short ton $=2,000$ pounds [\mathbf{X}], metric tonne $=2,200$ pounds []
 Question 8: long ton $=2,240$ pounds [], short ton $=2,000$ pounds [\mathbf{X}], metric tonne $=2,200$ pounds []
 In which county does this POE reside? San Diego County
 What is the name of the railroad company whose cars cross at this POE? Burlington Northern Santa Fe
 [BNSF]
 Sources of Historical Data: US Customs and local records.
 Sources of Projections: Michael Williams
 For Queries Regarding any Question in This Form: Contact Michael Williams at SourcePoint, Telephone 16195955646 or e-mail mwi@sourcepoint.org. | | | |
| | | | |
| | | | |
| | | | |

BLANK FORM

POE Name			
Minimum Criteria			
1	Are federal inspection facilities at the POE? [Y/N]		
		Border Crossings	
		Calendar Year 2000	Projections For Calendar Year 2020
Quantifiable Criteria			
2	Specify the number of north-bound trucks that cross the border into the United States [US] at this POE.		
3	Specify the volume of goods [in tons] transported by the north-bound trucks that cross the border into the US at this POE.		
4	Specify the value of the goods [in millions of dollars] transported by the north-bound trucks that cross the border into the US at this POE.		
5	Specify the number of north-bound passenger vehicles that cross the border into the US at this POE.		
6	Specify the number of north-bound buses that cross the border into the US at this POE.		
7	Specify the number of north-bound rail cars that cross the border into the US at this POE.		
8	Specify the volume of goods [in tons] transported by the north-bound rail cars that cross the border into the US at this POE.		
9	Specify the number of twenty foot equivalent containers [TEU] transported by the north-bound rail cars that cross the border into the US at this POE.		
10	Specify the value of the goods [in millions of dollars] transported by the north-bound rail cars that cross the border into the US at this POE.		
11	Specify the number of north-bound pedestrians that cross the border into the US at this POE.		
Check type of ton used to answer questions 3 \& 8 Question 3: long ton $=2,240$ pounds [], short ton $=2,000$ pounds [\mathbf{X}], metric tonne $=2,200$ pounds [] Question 8: long ton $=2,240$ pounds [], short ton $=2,000$ pounds [\mathbf{X}], metric tonne $=2,200$ pounds [] In which county does this POE reside? What is the name of the railroad company whose cars cross at this POE? Sources of Historical Data: Sources of Projections: For Queries Regarding any Question in This Form: Contact Michael Williams at SourcePoint, Telephone 16195955646 or e-mail mwi@sourcepoint.org.			

NOTES

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	

PART 3- AIRPORTS: VOLUME AND VALUE OF GOODS INSTRUCTIONS FOR COMPLETING THE AIRPORTS QUESTIONNAIRE

INTRODUCTION

This is the third of five questionnaires intended to gather information about the transportation systems in your state. Each questionnaire is a separate Excel spreadsheet and each deals with a different topic [highways, ports of entry, airports, maritime ports and corridors]. The data obtained from these questionnaires will be used to analyze your state's transportation corridors.

Each state has agreed to provide SourcePoint with data for the Bi-National Border Transportation Infrastructure Needs Assessment Study [BINS] that is endorsed by the US-Mexico Joint Working Committee on Transportation Planning \& Programming.

For any queries contact Michael Williams at (619) 595-5646 or e-mail at mwi@sourcepoint.org.

DEFINITION OF TRANSPORTATION CORRIDOR

A combination of modes that move people, vehicles and goods from one location to another. In general, a transportation corridor is not just one road or rail line, but a combination of modes.

RETURN THE COMPLETED SPREADSHEET TO SOURCEPOINT

After inserting your responses into this spreadsheet, please return it to Michael Williams at SourcePoint [mwi@sourcepoint.org]. For any queries or uncertainties regarding the questionnaire, please call Michael Williams at (619) 595-5646.

Your timely response is greatly appreciated. Please return the completed spreadsheet by April 4, 2003.
See the "FAQ" tab for answers to frequently asked questions, and please provide comments or clarification in the "Notes" Tab.

INSTRUCTION FOR COMPLETING THE AIRPORTS QUESTIONNAIRE

In each airport tab, the questionnaire requests data on the volume of goods [in tons] and the value of goods [in dollars] transported by airplane at the airport in calendar year 2000, projections for the year 2020 and the classification of these goods by whether they were imported or exported.
Further, the questionnaire asks you to specify the portion of the goods originating in Mexico, or destined for Mexico. For each airport there are two minimum criteria questions and 25 quantifiable questions. Please insert your answers into this spreadsheet. For the on-land movement of goods that were handled at the airport, the questionnaire requests that you specify the share of goods moved by truck or rail. The questionnaire requests the runway length for each runway in the year 2000 and the planned runway length in the year 2020 with the completion date for the planned
expansion. To be included in the data collected on your state, the airport must lie within 100 km of the US-Mexico border, and be identified as an international port of entry. There is one Tab for each airport with the airport's name on the tab. If an airport is omitted, please insert it and use the form in the "Other" tab.

EXAMPLE TABS

An example of how the questionnaires should be completed is contained in the "Example Airport" tab where some hypothetical data for Lindbergh field are presented.

FREQUENTLY ASKED QUESTIONS [FAQ]: THE AIRPORTS QUESTIONNAIRE

1. What airports did SourcePoint provide in this spreadsheet?

Answer: Airport Names.
2. Can we add airports to the list?

Answer: Yes.
3. If I decide to add an airport, how do I do it?

Answer: Use the "Other" tab in the far right of the spreadsheet. If you add more than one airport, please insert a tab at the far right. In addition, please write in the "Notes" tab the airport additions you made.
4. Can we delete airports from the list?

Answer: Yes.
5. If I decide to delete an airport, how do I do it?

Answer: Delete the appropriate tab in the spreadsheet. In addition, please write in the note tab the airport that you deleted.
6. What are the factors that would help us determine if an airport should be added or subtracted from the list?

Answer: Two items
a. Whether the airport is within 100 km of the US-Mexico border
b. Whether the airport serves an international port of entry
7. What happens if I cannot obtain a specific bit of information for the questionnaire [forecasts, for example]?

Answer: Leave the space blank for the data you cannot obtain and write a note in the "Notes" tab explaining what is missing.
8. Who can I contact for assistance?

Answer: Michael Williams, Telephone (619) 595-5646 or e-mail mwi@sourcepoint.org

COMPLETED EXAMPLE OF LINDBERGH AIRPORT WITH SOME HYPOTHETICAL DATA

Completed Example of Lindbergh Airport with Hypothetical Data			
Minimum Criteria			
1	Is the airport within 100 km of the US-Mexico border? [Y/N]		
2	Is the airport designated as an international Port of Entry? [Y/N]		
		Calendar Year 2000	Projections For Calendar Year 2020
Quantifiable Criteria			
3	How many runways are there at this airport?	1	1
4	Specify the runway length [in feet] for each runway		
4a	Runway \#1	9,400	10,500
4b	Runway \#2	N/A	N/A
4c	Runway \#3	N/A	N/A
5	If the 2020 runway length is greater than the 2000 runway length, specify the date when the longer runway becomes operational.		
5a	Runway \#1: Jan 2008		
5b	Runway \#2		
5 c	Runway \#3		
6	Specify the total volume of goods [in tons] exported and imported at the airport.	100,000	125,000
6 a	Specify the volume of goods [in tons] exported from the airport.	50,000	62,500
6b	Specify the volume of goods [in tons] imported at the airport.	50,000	62,500
7	Specify the total volume of goods [in tons] exported and imported at the airport to / from Mexico.	10,000	15,000
7 a	Specify the volume of goods [in tons] exported from the airport to Mexico.	5,000	7,500
7b	Specify the volume of goods [in tons] imported at the airport from Mexico.	5,000	75,000
8	Specify the total value of goods [in millions of dollars] exported and imported at the airport.	\$115.0	\$140.0
8 a	Specify the value of goods [in millions of dollars] exported from the airport.	\$55.0	\$65.0
8b	Specify the value of goods [in millions of dollars] imported at the airport.	\$60.0	\$75.0
9	Specify the total value of goods [in millions of dollars] exported and imported at the airport to / from Mexico.	\$11.5	\$14.0
9a	Specify the value of goods [in millions of dollars] exported from the airport to Mexico.	\$5.5	\$6.5
9b	Specify the value of goods [in millions of dollars] imported at the airport from Mexico.	\$6.0	\$7.5
10	Is this airport served by a railroad facility? [Y/N]	Y	Y
10a	If yes, what is the name of the railroad company?	BNSF	BNSF
11	What portion of the on-land movement of the goods is transported by trucks?	90.0\%	90.0\%
12	What portion of the on-land movement of the goods is transported by rail?	10.0\%	10.0\%
Check type of ton used to answer questions 6 \& 7			
Long ton $=2,240$ pounds [], short ton $=2,000$ pounds [\mathbf{X}], metric tonne $=2,200$ pounds []			
Sou	ef the Forecast Data Michael Williams ueries Regarding any Question in This Form: Please contact Michael 6195955646 or e-mail mwi@sourcepoint.org.	Please contact Michael Williams at SourcePoint, Telephone 1	

BLANK FORM

Airport Name			
Minimum Criteria			
1	Is the airport within 100 km of the US-Mexico border? [Y/N]		
2	Is the airport designated as an international Port of Entry? [Y/N]		
		Calendar Year 2000	Projections For Calendar Year 2020
Quantifiable Criteria			
3	How many runways are there at this airport?		
4	Specify the runway length [in feet] for each runway		
4a	Runway \#1		
4b	Runway \#2		
4c	Runway \#3		
5	If the 2020 runway length is greater than the 2000 runway length, specify the date when the longer runway becomes operational.		
5a	Runway \#1: Jan 2008		
5b	Runway \#2		
5c	Runway \#3		
6	Specify the total volume of goods [in tons] exported and imported at the airport.		
6a	Specify the volume of goods [in tons] exported from the airport.		
6b	Specify the volume of goods [in tons] imported at the airport.		
7	Specify the total volume of goods [in tons] exported and imported at the airport to / from Mexico.		
7a	Specify the volume of goods [in tons] exported from the airport to Mexico.		
7b	Specify the volume of goods [in tons] imported at the airport from Mexico.		
8	Specify the total value of goods [in millions of dollars] exported and imported at the airport.		
8 a	Specify the value of goods [in millions of dollars] exported from the airport.		
8b	Specify the value of goods [in millions of dollars] imported at the airport.		
9	Specify the total value of goods [in millions of dollars] exported and imported at the airport to / from Mexico.		
9a	Specify the value of goods [in millions of dollars] exported from the airport to Mexico.		
9b	Specify the value of goods [in millions of dollars] imported at the airport from Mexico.		
10	Is this airport served by a railroad facility? [Y/N]		
10a	If yes, what is the name of the railroad company?		
11	What portion of the on-land movement of the goods is transported by trucks?		
12	What portion of the on-land movement of the goods is transported by rail?		
Check type of ton used to answer questions $\mathbf{6} \boldsymbol{\&} 7$ Long ton $=2,240$ pounds [], short ton $=2,000$ pounds [\mathbf{X}], metric tonne $=2,200$ pounds [] Sources of Historical Data: Source of the Forecast Data For Queries Regarding any Question in This Form: Please contact Michael Williams at SourcePoint, Telephone (619) 5955646 or e-mail mwi@sourcepoint.org.			

NOTES

Notes	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	

PART 4- MARITIME PORTS: VOLUME AND VALUE OF GOODS INSTRUCTIONS FOR COMPLETING THE MARITIME PORTS QUESTIONNAIRE

INTRODUCTION

This is the forth of five questionnaires intended to gather information about the transportation systems in your state. Each questionnaire is a separate Excel spreadsheet and each deals with a different topic [highways, ports of entry, maritime ports, maritime ports and corridors]. The data obtained from these questionnaires will be used to analyze your state's transportation corridors.

Each state has agreed to provide SourcePoint with data for the Bi-National Border Transportation Infrastructure Needs Assessment Study [BINS] that is endorsed by the US-Mexico Joint Working Committee on Transportation Planning \& Programming.

For any queries contact Michael Williams at (619) 595-5646or e-mail at mwi@sourcepoint.org.

DEFINITION OF TRANSPORTATION CORRIDOR

A combination of modes that move people, vehicles and goods from one location to another. In general, a transportation corridor is not just one road or rail line, but a combination of modes.

RETURN THE COMPLETED SPREADSHEET TO SOURCEPOINT

After inserting your responses into this spreadsheet, please return it to Michael Williams at SourcePoint [mwi@sourcepoint.org]. For any queries or uncertainties regarding the questionnaire, please call Michael Williams at (619) 595-5646.

Your timely response is greatly appreciated. Please return the completed spreadsheet by April 4, 2003.
See the "FAQ" tab for answers to frequently asked questions, and please provide comments or clarification in the "Notes" Tab.

INSTRUCTION FOR COMPLETING THE MARITIME PORTS QUESTIONNAIRE

In each maritime port tab, the questionnaire requests data on the volume of goods [in tons], the number of 20 foot equivalent containers and the value of goods [in dollars] transported by ship at the maritime port in calendar year 2000, projections for the year 2020 and the classification of these goods by whether they were imported or exported. Further, the questionnaire asks you to specify the portion of the goods originating in Mexico, or destined for Mexico. For each water port there are two minimum criteria questions and 24 quantifiable questions. Please insert your answers into this spreadsheet. For the on-land movement of goods that were handled at the maritime port, the questionnaire requests that you specify the share of goods moved by truck or rail. The questionnaire requests the main channel depth for the maritime port in the year 2000 and the planned channel depth in the year 2020 with a date for completion of the planned expansion. To be included in the data collected on your state, the water port must lie within 100 km of the USMexico border, and be identified as an international port of entry. There is one Tab for each water
port with the water port's name on the tab. If a water port is omitted, please insert it and use the form in the "Other" tab.

EXAMPLE TABS

An example of how the questionnaires should be completed is contained in the "Example" tab where some hypothetical data for the Port of San Diego are presented.

FREQUENTLY ASKED QUESTIONS [FAQ]: THE MARITIME PORTS QUESTIONNAIRE

1. What maritime ports did SourcePoint provide in this spreadsheet?

Answer: Maritime port names
2. Can we add maritime ports to the list?

Answer: Yes
3. If I decide to add a maritime port, how do I do it?

Answer: Use the "Other" tab in the far right of the spreadsheet. If you add more than one maritime port, please insert a tab at the far right. In addition, please write in the "Notes" tab the maritime port additions you made.
4. Can we delete maritime ports from the list?

Answer: Yes
5. If I decide to delete a maritime port, how do I do it?

Answer: Delete the appropriate tab in the spreadsheet. In addition, please write in the note tab the maritime port that you deleted.
6. What are the factors that would help us determine if a maritime port should be added or subtracted from the list?

Answer: Two items.
a. Whether the maritime port is within 100 km of the US-Mexico border
b. Whether the maritime port serves an international port of entry
7. What happens if \mathbf{i} cannot obtain a specific bit of information for the questionnaire [forecasts, for example]?

Answer: Leave the space blank for the data you cannot obtain and write a note in the "Notes" tab explaining what is missing.
8. Who can I contact for assistance?

Answer: Michael Williams, Telephone (619) 595-5646or e-mail mwi@sourcepoint.org

COMPLETED EXAMPLE OF SAN DIEGO'S MARITIME PORT WITH SOME HYPOTHETICAL DATA

Minimum Criteria			
1	Is the maritime port within 100 km of the US-Mexico border? [Y/N]	\mathbf{Y}	
2	Is the maritime port designated as an international Port of Entry? [Y/N]	Y	
		Border Crossings	
		Calendar Year 2000	Projections For Calendar Year 2020
Quantifiable Criteria			
3	What is the main channel depth [in feet] at this maritime port?	35	42
4	If the 2020 channel depth is greater than the 2000 channel depth, specify the date when the deeper channel depth becomes operational.		March 2012
5	Specify the total volume of goods [in tons] exported and imported at the maritime port.	300,000	500,000
5a	Specify the volume of goods [in tons] exported from the maritime port.	150,000	250,000
5b	Specify the volume of goods [in tons] imported at the maritime port.	150,000	250,000
6	Specify the total volume of goods [in tons] exported and imported at the maritime port to / from Mexico.	30,000	50,000
6a	Specify the number of tons exported from the maritime port to Mexico.	15,000	25,000
6b	Specify the number of tons imported at the maritime port from Mexico.	15,000	25,000
7	Specify the total number of 20 foot equivalent containers [TEUs] exported and imported at the maritime port.	10,000	30,000
7a	Specify the number of TEUs exported at the maritime port.	5,000	15,000
7b	Specify the number of TEUs imported at the maritime port.	5,000	15,000
8	Specify the number of TEUs exported and imported at the maritime port to / from Mexico.	500	500
8 a	Specify the number of TEUs exported at the maritime port to Mexico.	250	250
8b	Specify the number of TEUs imported at the maritime port from Mexico.	250	250
9	Specify the total value of goods [in millions of dollars] exported and imported at the maritime port.	\$50.0	\$140.0
9a	Specify the value of goods [in millions of dollars] exported from the maritime port.	\$25.0	\$65.0
9b	Specify the value of goods [in millions of dollars] imported at the maritime port.	\$25.0	\$75.0
10	Specify the total value of goods [in millions of dollars] exported and imported at the maritime port to / from Mexico.	\$2.5	\$2.5
10a	Specify the value of goods [in millions of dollars] exported from the maritime port to Mexico.	\$1.5	\$1.5
10b	Specify the value of goods [in millions of dollars] imported at the maritime port from Mexico.	\$1.0	\$1.0
11	Is this maritime port served by a railroad facility? [Y/N]	Y	Y
11a	If yes, what is the name of the railroad company?	BNSF	BNSF
12	What portion of the on-land movement of the goods is transported by rail?	10.0\%	10.0\%
13	What portion of the on-land movement of the goods is transported by trucks?	90.0\%	90.0\%

Check type of ton used to answer questions 5 \& 6

Long ton $=2,240$ pounds [], short ton $=2,000$ pounds [\mathbf{X}], metric tonne $=2,200$ pounds []
Sources of Historical Data:
Source of the Forecast Data Michael Williams
For Queries Regarding any Question in This Form: Please contact Michael Williams at SourcePoint, Telephone (619) 5955646or e-mail mwi@sourcepoint.org.

BLANK MARITIME PORT FORM

Minimum Criteria			
2	Is the maritime port within 100 km of the US-Mexico border? [Y/N]		
	Is the maritime port designated as an international Port of Entry? [Y/N]		
		Border Crossings	
		Calendar Year 2000	Projections For Calendar Year 2020
Quantifiable Criteria			
3	What is the main channel depth [in feet] at this maritime port?		
4	If the 2020 channel depth is greater than the 2000 channel depth, specify the date when the deeper channel depth becomes operational.		
5	Specify the total volume of goods [in tons] exported and imported at the maritime port.		
5 a	Specify the volume of goods [in tons] exported from the maritime port.		
5b	Specify the volume of goods [in tons] imported at the maritime port.		
6	Specify the total volume of goods [in tons] exported and imported at the maritime port to / from Mexico.		
6 a	Specify the number of tons exported from the maritime port to Mexico.		
6b	Specify the number of tons imported at the maritime port from Mexico.		
7	Specify the total number of 20 foot equivalent containers [TEUs] exported and imported at the maritime port.		
7a	Specify the number of TEUs exported at the maritime port.		
7b	Specify the number of TEUs imported at the maritime port.		
8	Specify the number of TEUs exported and imported at the maritime port to / from Mexico.		
8a	Specify the number of TEUs exported the maritime port to Mexico.		
8b	Specify the number of TEUs imported at the maritime port from Mexico.		
9	Specify the total value of goods [in millions of dollars] exported and imported at the maritime port.		
9a	Specify the value of goods [in millions of dollars] exported from the maritime port.		
9b	Specify the value of goods [in millions of dollars] imported at the maritime port.		
10	Specify the total value of goods [in millions of dollars] exported and imported at the maritime port to / from Mexico.		
10a	Specify the value of goods [in millions of dollars] exported from the maritime port to Mexico.		
10b	Specify the value of goods [in millions of dollars] imported at the maritime port from Mexico.		
11	Is this maritime port served by a railroad facility? [Y/N]		
11a	If yes, what is the name of the railroad company?		
12	What portion of the on-land movement of the goods is transported by rail?		
13	What portion of the on-land movement of the goods is transported by trucks?		
Check type of ton used to answer questions 5 \& 6 Long ton $=2,240$ pounds [], short ton $=2,000$ pounds [\mathbf{X}], metric tonne $=2,200$ pounds [] Sources of Historical Data: Source of the Forecast Data For Queries Regarding any Question in This Form: Please contact Michael Williams at SourcePoint, Telephone (619) 5955646or e-mail mwi@sourcepoint.org.			

NOTES

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	

PART 5- IDENTIFYING CORRIDORS INSTRUCTIONS FOR COMPLETING THE CORRIDORS QUESTIONNAIRE

INTRODUCTION

This is the fifth of five questionnaires intended to gather information about the transportation systems in your state. Each questionnaire is a separate Excel spreadsheet and each deals with a different topic [highways, ports of entry, maritime ports, maritime ports and corridors]. The data obtained from these questionnaires will be used to analyze your state's transportation corridors.

Each state has agreed to provide SourcePoint with data for the Bi-National Border Transportation Infrastructure Needs Assessment Study [BINS] that is endorsed by the US-Mexico Joint Working Committee on Transportation Planning \& Programming.

For any queries contact Michael Williams at (619) 595-5646or e-mail at mwi@sourcepoint.org.

DEFINITION OF TRANSPORTATION CORRIDOR

A combination of modes that move people, vehicles and goods from one location to another. In general, a transportation corridor is not just one road or rail line, but a combination of modes.

RETURN THE COMPLETED SPREADSHEET TO SOURCEPOINT

After inserting your responses into this spreadsheet, please return it to Michael Williams at SourcePoint [mwi@sourcepoint.org]. For any queries or uncertainties regarding the questionnaire, please call Michael Williams at (619) 595-5646.

Your timely response is greatly appreciated. Please return the completed spreadsheet by April 4, 2003.

See the "FAQ" tab for answers to frequently asked questions, and please provide comments or clarification in the "Notes" Tab.

INSTRUCTION FOR COMPLETING THE CORRIDORS QUESTIONNAIRE

In the corridors tab, this questionnaire asks you to identify and name the corridors within 100 km of the US-Mexico border. Assign facilities to corridors by marking an X in each box to specify the corridor in which the facility belongs. A facility may be a highway or railroad. Use the results from Part 1 - Highways to assign highways to corridors. A highway may be assigned to more than one corridor [see Example tab]. Review the list of facilities provided and make sure it is complete - add or delete as necessary. Please provide maps to assist in the description of the transportation systems. Please mail a paper map and electronic files in either portable document format [pdf] by Adobe Acrobat, or a Joint Photographic Expert Group [JPEG] file. Mail both to Michael Williams, SourcePoint, 401 B Street, Suite 800, San Diego, CA 92101-4231.

EXAMPLE TABS

An example of how the corridor tab should be completed is contained in the "Example" tab where some corridor names, highways and a railroad are entered.

SOCIO-ECON TAB

In the socio-econ tab, please provide the following socio-economic data for your state and for all counties that are within 100 km of the US-Mexico border:

1. The population for 1995, 2000 and a projection for 2020
2. The number of people employed in 1995, 2000 and a projection for 2020.
3. The dollar value of your trade with Mexico for 1995, 2000 and a projection for 2020.
4. Personal Income [in dollars] for 1995, 2000 and a projection for 2020.

Data for 1995 is requested as this signifies the beginning of the North American Free Trade Agreement [NAFTA].

FREQUENTLY ASKED QUESTIONS [FAQ]: THE CORRIDORS QUESTIONNAIRE

1. Where do I get the names for the corridors?

Answer: It is up to each state to name their corridors.
2. Can highways and railroads be in more than one corridor?

Answer: Yes. It is up to the state to decide which corridor, or corridors, each highway and railroad is in. If a highway is divided among more than corridor, it has to be done at the segment level - and this is contained in Part 1.
3. Can we add or delete highways from the list

Answer: Yes. Use the information from Part 1 to revise the list of highways in the Corridors questionnaire. If you do make changes, please specify the changes in the "Notes" tab.
4. What happens if I cannot obtain a specific bit of information for the questionnaire [forecasts, for example]?

Answer: Leave the space blank for the data you cannot obtain and write a note in the "Notes" tab explaining what is missing.
5. Who can I contact for assistance?

Answer: Michael Williams, Telephone (619) 5955646 or e-mail mwi@sourcepoint.org

COMPLETED EXAMPLE OF CORRIDORS AND FACILITIES IN CALIFORNIA

Completed Example of Corridors and Facilities in California							
	Corridors						Comments
	A	B	C	D	E	F	
Name of Corridor [defined by user]:	West Coast	Alameda	Economic Lifeline				
Facility							
Highways - Place an X in the box							
The highway must be within 100 km of the US-Mexico Border and serve an international POE							
Interstate - 5 [l-5]	\mathbf{x}						
I-8	\mathbf{X}	x					1-8 is allocated to 2 corridors.
1-15			X				
Others:							
Railroads - Place an X in the box							
The rail line must be within 100 km of the US-Mexico Border and serve an international POE							
BNSF	\mathbf{x}						
Other:							
For Queries Regarding any Question in This Form: Please contact Michael Williams at SourcePoint, Telephone (619) 595-5646or e-mail mwi@sourcepoint.org.							

BLANK CORRIDORS AND FACILITIES FORM

Corridors and Facilities							
	Corridors						Comments
	A	B	C	D	E	F	
Name of Corridor [defined by user]:							
Facility							
Highways - Place an X in the box							
The highway must be within 100 km of the US-Mexico Border and serve an international POE							
							1-8 is allocated to 2 corridors.
Others:							
Railroads - Place an X in the box							
The rail line must be within 100 km of the US-Mexico Border and serve an international POE							
Other:							
For Queries Regarding any Question in This Form: Please contact Michael Williams at SourcePoint, Telephone (619) 595-5646or e-mail mwi@sourcepoint.org.							

BLANK SOCIO-ECONOMIC FORM

Socio-Economic Information for your State and Counties:			
All Counties are within 100 km of the US-Mexican border.			
	1995	2000	2020
Please provide the following data for the state of State Name[state totals]:			
Population:			
Employment [number of employees]:			
Cross Border Trade with Mexico [in dollars]:			
Personal Income [in dollars]:			
Please provide the following data for the County of County Name:			
Population:			
Employment [number of employees]:			
Cross Border Trade with Mexico [in dollars]:			
Regional Product [in dollars] OR:			
Personal Income [in dollars]:			
Please provide the following data for the County of County Name:			
Population: ${ }^{\text {P }}$,			
Employment [number of employees]:			
Cross Border Trade with Mexico [in dollars]:			
Regional Product [in dollars] OR:			
Personal Income [in dollars]:			
In the event there are more counties, please provide their name and answer the following questions:			
Population:			
Employment [number of employees]:			
Cross Border Trade with Mexico [in dollars]:			
Regional Product [in dollars] OR:			
Personal Income [in dollars]:			
Sources of Data:			
Population:			
Employment:			
Mexican Trade:			
Personal Income			

Suggested Sources for Historical Data [if you need assistance]:
Population = US Department of Commerce, Bureau of Economic Analysis, http://www.bea.doc.gov/bea/regional/reis/ Employment = US Department of Commerce, Bureau of Economic Analysis, http://www.bea.doc.gov/bea/regional/reis/ Mexican Trade = US Department of Transportation, Transborder Surface Freight Data, http://www.bts.gov/transborder/
Personal Income = US Department of Commerce, Bureau of Economic Analysis
http://www.bea.doc.gov/bea/regional/reis/

For Queries Regarding any Question in This Form:

Please contact Michael Williams at SourcePoint, Telephone (619) 595-5646or e-mail mwi@sourcepoint.org.

NOTES

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	

PARTE 1-CARRETERAS: ASIGNANDO INFORMACIÓN A LOS CORREDORES INSTRUCCIONES PARA COMPLETAR EL CUESTIONARIO DE CARRETERAS

INTRODUCCION

Este es el primero de cinco cuestionarios elaborados con el propósito de reunir información acerca de los sistemas del transporte en su estado. Cada cuestionario es una hoja electrónica en Excel y cada una trata de temas diferentes [carreteras, cruces fronterizos, aeropuertos, puertos marítimos, ferrocarriles y corredores]. Los datos obtenidos en estos cuestionarios se usarán para analizar los corredores de transporte de su estado.

Los estados acordaron proporcionar a SourcePoint los datos para el Estudio de Evaluación de Necesidades de Infraestructura de Transporte Fronterizo [BINS, por sus siglas en inglés] y que es endosado por el Comité Conjunto de Trabajo de México-EUA sobre Planeación y Programación de Transporte.

Para cualquier pregunta, por favor contactar a Santiago Dávila al (619) 595-5635 o e-mail a sda@sourcepoint.org.

DEFINICION DE UN CORREDOR DE TRANSPORTE

Combinación de medios por los que se transportan gente, vehículos y bienes de un lugar a otro. Un corredor de transporte no es solo una carretera o una línea de ferrocarril, sino una combinación de modos.

REGRESAR LA HOJA ELECTRONICA COMPLETADA A SOURCEPOINT

Después de insertar sus respuestas en la hoja electrónica, por favor regresar la hoja a Santiago Dávila a SourcePoint [sda@sourcepoint.org]. Por favor contactar a Santiago Dávila a SourcePoint para cualquier aclaración al (619) 595-5635.

Su oportuna respuesta será apreciada. Por favor regresar la completa hoja electrónica antes del 7 de Abril, 2003.

Vea la cejilla "FAQ" para respuestas a pregentas frecuentes. Por Favor Proporcione Comentarios y Clarificaciones en la Cejilla de Notas.

INSTRUCCIONES PARA COMPLETAR EL CUESTIONARIO DE CARRETERAS

En cada cejilla de carreteras, el cuestionario requiere el Aforo Promedio [AADT, por sus siglas en inglés] por segmento para cada carretera, para el año 2000 y la asignación de ese Aforo Promedio a más de un corredor. Además, el Aforo Promedio proyectado para el año 2020 es también requerido
por segmento, para cada carretera y debe ser asignado a más de un corredor. También requerimos el Nivel de Servicio [NDS], el volumen de tráfico, la capacidad de tráfico para cada segmento durante la hora pico de la mañana y la tarde para el año 2000, y las proyecciones para el año 2020. Todas las instalaciones tienen que estar dentro de los 100 Km . de la frontera entre México-EUA y deben servir como Puerta de Entrada internacional. Para cada carretera hay dos preguntas de criterio mínimo y otras 16 preguntas. Por favor inserte sus respuestas en esta Hoja Electrónica.

Para cada carretera hay un cejilla para colectar información para el año 2000, y otra cejilla para colectar proyecciones para el año 2020.

Clave: "Copiar y Pegar" la información de segmentos de su base de datos a la hoja electrónica en Excel para facilitar su trabajo. Necesitamos toda esta información en forma electrónica. Cada estado debe especificar los segmentos de cada carretera y también especificar los corredores. Por favor verificar la lista de corredores en la parte de arriba de cada cejilla de carretera. Si la cejilla omite algún corredor, por favor insertar ese corredor que falta. De la misma manera, si usted necesita añadir segmentos, por favor insertarlos el la parte de abajo de la cejilla. Si una carretera es omitida, por favor insertarla y usar las cejillas con el nombre "Otro 2000" y "Otro 2020". Si una carretera no esta en actual operación, pero esta en etapa de construcción y operación empezara entre la fecha de hoy y el año 2020, por favor añadir la carretera en la cejilla con el nombre "Otro 2020".

CEJILLAS DE EJEMPLO

Hay dos cejillas de ejemplo de como se deben llenar los cuestionarios. La cejilla "Ejemplo 2000" contiene infamación hipotética para la carretera Interestatal 8 [I-8] para el año 2000 mientras que la cejilla "Ejemplo 2020" contiene información hipotética para l-8 para el año 2020.

PREGUNTAS FRECUENTES:

CUESTIONARIO DE CARRETERAS

1. ¿Que carreteras fueron proporcionadas por SourcePoint?

Respuesta: Carretera Mexicana
2. ¿Se pueden añadir carreteras a la lista?

Respuesta: Sí.
3. ¿Si se decide añadir una carretera, como lo hago?

Respuesta: Usar la cejilla "Otra 2000" y la cejilla "Otra 2020" a la derecha de la hoja electrónica. Si se va a añadir más de una carretera, por favor insertar cejillas a la derecha. También proporcionar los cambios hechos en la cejilla de "Notas".
4. ¿Podemos borrar carreteras de la lista?

Respuesta: Sí.
5. ¿Si decido borrar una carretera, como lo hago?

Respuesta: Borrar la cejilla en la hoja electrónica. También proporcionar los cambios hechos en la cejilla de "Notas".
6. ¿Cuales son los factores que determinarian si una carretera debe ser añadida o borrada de la lista proporcionada?

Respuesta: Dos factores.
a. Si la carretera esta dentro de los 100 Km . de la frontera entre México-EUA
b. Si la carretera sirve como un punto de entrada internacional
7. ¿Que pasa si no se puede conseguir información especifica acerca de una pregunta en el cuestionario?

Respuesta: Dejar el espacio vacío y explicar en la cejilla de "Notas" qué información, y por qué, fue omitida.
8. ¿Quien decide que segmentos de cada carretera se incluyen?

Respuesta: Su estado decide. Sugerimos analice su banco de datos para poder obtener información específica para cada carretera.
9. ¿Tengo que ingresar la información de cada segmento en el cuestionario?

Respuesta: Sugerimos que "copie y pegue" la información dentro de cada hoja electrónica. Cuando pida la información, tratar de que esta información sea proporcionada en formato de hoja electrónica, de esa manera se puede copiar fácilmente entre cuestionarios.
10. ¿Puede asignarse una carretera a mas de un corredor?

Respuesta: Sí, depende de las preferencias de cada estado. Si una carretera forma parte de más de un corredor, cada estado decide que segmento de carretera se incluye en cada corredor.
11. ¿A quien puedo contactar para asistencia?

Respuesta: A Santiago Dávila, Teléfono (619) 5955646 o e-mail sda@sourcepoint.org.

EJEMPLO COMPLETADO PARA LA CARRETERA INTERESTATAL 8 CON INFORMACION HIPOTETICA PARA EL AÑO 2000

Criterio Mínimo:																		
Hay segmentos de carretera dentro de los 100 Km . de la frontera México-EUA? [S/N]								S										
Sirve la carretera a una Puerta de Entrada internacional? [S/N]								S										
Para la información cuantificable, por favor completar la siguiente tabla.								*VER FINAL DE ESTA CEJILLA PARA MAS PREGUNTAS*										
	Especifique el kilómetro donde el segmento empieza	Especifique el kilómetro donde el segmento termina	Especifique el Aforo Promedio [AP] y trafico para cada segmento	Especifique el Nivel de Servicio [De A a F] para cada segmento durante la hora pico am/pm	Especifique el volumen de trafico para cada segmento durante la hora pico am/pm	Especifique la capacidad del segmento durante la hora pico am/pm												
	Segmento \#	Km. Inicial	Km. Final	Aforo Promedio	Nivel De Servicio	Volumende Trafico en Hora	$<=====$ Aforo Promedio asignado a Corredores =====>											
							A	B	C	D	E	F						
1	0.000	0.458	94,676	C	12,400	16,000	94,676											
2	0.458	3.071	72,222	C	10,400	16,000	72,222											
3	13.283	13.974	179,438	F	18,800	16,000		179,438										
4	14.927	15.326	208,882	F	19,200	16,000		208,882										
5	15.326	15.960	239,250	F	20,000	16,000		239,250										
6	15.960	16.480	214,643	F	19,800	16,000		214,643										
7	16.480	17.387	198,235	F	18,800	16,000		198,235										
8	17.387	18.174	167,903	F	18,800	16,000		167,903										
9	26.681	30.573	150,381	D	15,900	16,000		150,381										
10	30.573	34.025	238,666	F	20,000	16,000		238,666										
11	38.891	41.591	187,777	F	18,800	16,000		187,777										
Otras Preguntas																		
Fuente de Datos: base de datos HPMS para AADT																		
Individuo llenando Formulario (Nombre, Información de Contacto, Organización																		
Instalaciones Intermodales Especifique si la carretera es servida por una línea de tren por medio de una instalación intermodal? [S/N] S																		
Si es, especifique el corredor en en cual esta la instalación intermodal?							A											
Si es, especifique el nombre de la compañía de ferrocarril?							San Diego \& Arizona Eastern [SDAE]											
Preguntas acerca de esta página: Por favor contactar a Santiago Dávila en SourcePoint para cualquier aclaración al TEL: 6195955635 o e-mail a sda@sourcepoint.org.																		

EJEMPLO COMPLETADO PARA LA CARRETERA INTERESTATAL 8 CON INFORMACION HIPOTETICA PARA EL AÑO 2020

Criterio Mínimo:

Otras Preguntas

Fuente de Datos:
Individuo Ilenando Formulario (Nombre, Información de Contacto, Organización)
Instalaciones Intermodales
Especifique si la carretera es servida por una línea de tren por medio de una instalación intermodal? [S/N]
Si es, especifique el corredor en en cual esta la instalación intermodal?
Si es, especifique el nombre de la compañía de ferrocarril?
Preguntas acerca de esta página: Por favor contactar a Santiago Dávila en SourcePoint para cualquier aclaración al TEL: 6195955635 o e-mail a sda@sourcepoint.org.

Criterio Mínimo:

Hay segmentos de carretera dentro de los 100 Km . de la frontera México-EUA? [S/N]												
Sirve la carretera a una Puerta de Entrada internacional? [S/N]												
Para la información cuantificable, por favor completar la siguiente tabla.								*VER FINAL DE ESTA CEJILLA PARA MAS PREGUNTAS*				
	Especifique el kilómetro donde el segmento empieza	Especifique el kilómetro donde el segmento termina	Especifique el Aforo Promedio [AP] y trafico para cada segmento	Especifique el Nivel de Servicio [De A a F] para cada segmento durante la hora pico am/pm	Especifique el volumen de trafico para cada segmento durante la hora pico am/pm	Especifique la capacidad del segmento durante la hora pico am/pm						
	Segmento \#	Km. Inicial	Km. Final	Aforo Promedio	Nivel De Servicio	Volumende Trafico en Hora	<===== Aforo Promedio asignado a Corredores =====>>					
							A	B	C	D	E	F
1												
2												
3												
4												
5												
6												
7												
8												
9												
10												
11												

Otras Preguntas

Fuente de Datos:
Individuo llenando Formulario (Nombre, Información de Contacto, Organización)

Instalaciones Intermodales

Especifique si la carretera es servida por una línea de tren por medio de una instalación intermodal? [S/N]
Si es, especifique el corredor en en cual esta la instalación intermodal?
Si es, especifique el nombre de la compañía de ferrocarril?
Preguntas acerca de esta página: Por favor contactar a Santiago Dávila en SourcePoint para cualquier aclaración al TEL: 6195955635 o e-mail a sda@sourcepoint.org.

NOTAS

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	

INTRODUCCION

Este es el quinto de cinco cuestionarios elaborados con el propósito de reunir información acerca de los sistemas del transporte en su estado. Cada cuestionario es una hoja electrónica en Excel y cada una trata de temas diferentes [carreteras, cruces fronterizos, aeropuertos, puertos marítimos, ferrocarriles y corredores]. Los datos obtenidos en estos cuestionarios se usarán para analizar los corredores de transporte de su estado.

Los estados acordaron proporcionar a SourcePoint los datos para el Estudio de Evaluación de Necesidades de Infraestructura de Transporte Fronterizo [BINS, por sus siglas en inglés] y que es endosado por el Comité Conjunto de Trabajo de México-EUA sobre Planeación y Programación de Transporte.

Para cualquier pregunta, por favor contactar a Santiago Dávila al (619) 595-5635 o e-mail a sda@sourcepoint.org.

DEFINICION DE UN CORREDOR DE TRANSPORTE

Combinación de medios por los que se transportan gente, vehículos y bienes de un lugar a otro. Un corredor de transporte no es solo una carretera o una línea de ferrocarril, sino una combinación de modos.

REGRESAR LA HOJA ELECTRONICA COMPLETADA A SOURCEPOINT

Después de insertar sus respuestas en la hoja electrónica, por favor regresar la hoja a Santiago Dávila a SourcePoint [sda@sourcepoint.org]. Por favor contactar a Santiago Dávila a SourcePoint para cualquier aclaración al (619) 595-5635.

Su oportuna respuesta será apreciada. Por favor regresar la completa hoja electrónica antes del 7 de Abril, 2003.

Vea la cejilla "FAQ" para respuestas a pregentas frecuentes. Por Favor Proporcione Comentarios y Clarificaciones en la Cejilla de Notas.

INSTRUCCIONES PARA COMPLETAR EL CUESTIONARIO DE CRUCES FRONTERIZOS [CF]

En cada cejilla de Cruce Fronterizo, el cuestionarios requiere el número de cruces en dirección sur de camiones, vehículos de pasajeros, autobuses, vagones de tren y peatones en el año 2000 así como los cruces en dirección sur para el año 2020. Para cada Puerto Fronterizo hay un criterio mínimo y 10 preguntas cuantificables. Por favor insertar sus respuestas en esta hoja electrónica. Para cada cejilla de Cruce Fronterizo, el cuestionario requiere información acerca del volumen y valor de carga [en toneladas y en pesos] transportadas a través de la frontera en el año 2000 así como sus proyecciones
para el año 2020. Si se omitió un Puerto de Entrada, por favor de insertarlo en la cejilla llamada "Otro CF."

CEJILLAS DE EJEMPLO

Hay una cejilla de ejemplo de como se debe llenar este cuestionario. La cejilla "Ejemplo CF" contiene información hipotética para el cruce fronterizo de Otay Mesa para el año 2000 y proyecciones para el año 2020.

PREGUNTAS FRECUENTES: CUESTIONARIO DE CRUCES FRONTERIZOS

1. ¿Que Cruces Fronterizos fueron proporcionados por Sourcepoint?

Respuesta: Cruce Fronterizo
2. ¿Se pueden añadir Cruces Fronterizos a la lista?

Respuesta: Sí.
3. ¿Si se decide añadir un Cruce Fronterizo, como lo hago?

Respuesta: Usar la cejilla "Otra CF" a la derecha de la hoja electrónica. Si se va a añadir más de un cruce fronterizo, por favor insertar cejillas a la derecha. También proporcionar los cambios hechos en la cejilla de "Notas".
4. ¿Podemos borrar Cruces Fronterizos de la lista?

Respuesta: Sí.
5. ¿Si decido borrar un Cruce Fronterizo, como lo hago?

Respuesta: Borrar la cejilla en la hoja electrónica. También proporcionar los cambios hechos en la cejilla de "Notas".
6. ¿Que pasa si no se puede conseguir información especifica acerca de una pregunta en el cuestionario?

Respuesta: Dejar el espacio vacío y explicar en la cejilla de "Notas" qué información, y por qué, fue omitida.
7. ¿A quien puedo contactar para asistencia?

Respuesta: A Santiago Dávila, Teléfono (619) 5955646 o e-mail sda@sourcepoint.org

EJEMPLO DE FORMATO COMPLETO PARA EL CRUCE FRONTERIZO

Criterio Mínimo			
1	¿Hay inspecciones federales en el CF? [S/N]	S	
		Cruces Fronterizos	
		Año 2000	Proyecciones Para el Año 2020
Criterio Cuantificable			
2	Especifique el número de camiones que cruzan la frontera en dirección norte hacia los EUA por este cruce fronterizo.	280,000	500,000
3	Especifique el volumen de la carga [en toneladas] transportada por camiones que cruzan la frontera en dirección norte hacia los EUA por este cruce fronterizo.	2,700,000	4,500,000
4	Especifique el valor de la carga [en pesos] transportada por camiones que cruzan la frontera en dirección norte hacia los EUA por este cruce fronterizo.	\$11,500.0	\$23,000.0
5	Especifique el número de vehículos privados que cruzan la frontera en dirección norte hacia los EUA por este cruce fronterizo.	4,850,000	8,000,000
6	Especifique el número de autobuses que cruzan la frontera en dirección norte hacia los EUA por este cruce fronterizo.	45,700	80,000
7	Especifique el número de vagones de tren que cruzan la frontera en dirección norte hacia los EUA por este cruce fronterizo.	3,874	12,000
8	Especifique el volumen de la carga [en toneladas] transportada por tren que cruzan la frontera en dirección norte hacia los EUA por este cruce fronterizo.	380,000	700,000
9	Especifique el número de vagones equivalentes a 20 pies, transportados por trenes que cruzan la frontera en dirección norte hacia los EUA por este cruce fronterizo.	10,000	30,000
10	Especifique el valor de la carga [en pesos] transportada por tren en dirección norte que cruzan la frontera a los EUA por este cruce fronterizo.	\$215.1	\$425.6

Especifique qué valor de tonelada usó para contestar las preguntas $\mathbf{3}$ y 8
Pregunta 3: ton larga $=2,240$ libras [], ton corta $=2,000$ libras [\mathbf{X}], ton métrica $=2,200$ libras []
Pregunta 8: ton larga $=2,240$ libras [], ton corta $=2,000$ libras [\mathbf{X}], ton métrica $=2,200$ libras []
¿En qué municipio reside este Cruce Fronterizo? Municipio de San Diego
¿Cuál es el nombre de la compañía de ferrocarril que cruza este puerto de entrada? Burlington Northern Santa Fe [BNSF]
Fuente de Información Histórica: Servicio de Aduanas de Estados Unidos y archivos locales.
Fuente de Proyecciones: Michael Williams
Para preguntas y aclaraciones en este cuestionario: Por favor contactar a Santiago Dávila en SourcePoint, Teléfono
(619) 595-5635 o e-mail sda@sourcepoint.org.

CRUCE FRONTERIZO

Criterio Mínimo			
1	¿Hay inspecciones federales en el CF? [S/N]		
		Cruces Fronterizos	
		Año 2000	Proyecciones Para el Año 2020
Criterio Cuantificable			
2	Especifique el número de camiones que cruzan la frontera en dirección norte hacia los EUA por este cruce fronterizo.		
3	Especifique el volumen de la carga [en toneladas] transportada por camiones que cruzan la frontera en dirección norte hacia los EUA por este cruce fronterizo.		
4	Especifique el valor de la carga [en pesos] transportada por camiones que cruzan la frontera en dirección norte hacia los EUA por este cruce fronterizo.		
5	Especifique el número de vehículos privados que cruzan la frontera en dirección norte hacia los EUA por este cruce fronterizo.		
6	Especifique el número de autobuses que cruzan la frontera en dirección norte hacia los EUA por este cruce fronterizo.		
7	Especifique el número de vagones de tren que cruzan la frontera en dirección norte hacia los EUA por este cruce fronterizo.		
8	Especifique el volumen de la carga [en toneladas] transportada por tren que cruzan la frontera en dirección norte hacia los EUA por este cruce fronterizo.		
9	Especifique el número de vagones equivalentes a 20 pies, transportados por trenes que cruzan la frontera en dirección norte hacia los EUA por este cruce fronterizo.		
10	Especifique el valor de la carga [en pesos] transportada por tren en dirección norte que cruzan la frontera a los EUA por este cruce fronterizo.		
Especifique qué valor de tonelada usó para contestar las preguntas $\mathbf{3}$ y 8 Pregunta 3: ton larga $=2,240$ libras [], ton corta $=2,000$ libras [], ton métrica $=2,200$ libras [] Pregunta 8: ton larga $=2,240$ libras [], ton corta $=2,000$ libras [], ton métrica $=2,200$ libras [] ¿En qué municipio reside este Cruce Fronterizo? ¿Cuál es el nombre de la compañía de ferrocarril que cruza este puerto de entrada? Fuente de Información Histórica: Fuente de Proyecciones: Para preguntas y aclaraciones en este cuestionario: Por favor contactar a Santiago Dávila en SourcePoint, Teléfono (619) 595-5635 o e-mail sda@sourcepoint.org.			

NOTAS

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	

PARTE 3-AEROPUERTOS: VOLUMEN Y VALOR DE LA CARGA INSTRUCCIONES PARA COMPLETAR EL CUESTIONARIO DE AEROPUERTOS

INTRODUCCION

Este es el tercero de cinco cuestionarios elaborados con el propósito de reunir información acerca de los sistemas del transporte en su estado. Cada cuestionario es una hoja electrónica en Excel y cada una trata de temas diferentes [carreteras, cruces fronterizos, aeropuertos, puertos marítimos, ferrocarriles y corredores]. Los datos obtenidos en estos cuestionarios se usarán para analizar los corredores de transporte de su estado.

Los estados acordaron proporcionar a SourcePoint los datos para el Estudio de Evaluación de Necesidades de Infraestructura de Transporte Fronterizo [BINS, por sus siglas en inglés] y que es endosado por el Comité Conjunto de Trabajo de México-EUA sobre Planeación y Programación de Transporte.

Para cualquier pregunta, por favor contactar a Santiago Dávila al (619) 595-5635 o e-mail a sda@sourcepoint.org.

DEFINICION DE UN CORREDOR DE TRANSPORTE

Combinación de medios por los que se transportan gente, vehículos y bienes de un lugar a otro. Un corredor de transporte no es solo una carretera o una línea de ferrocarril, sino una combinación de modos.

REGRESAR LA HOJA ELECTRONICA COMPLETADA A SOURCEPOINT

Después de insertar sus respuestas en la hoja electrónica, por favor regresar la hoja a Santiago Dávila a SourcePoint [sda@sourcepoint.org]. Por favor contactar a Santiago Dávila a SourcePoint para cualquier aclaración al (619) 595-5635.

Su oportuna respuesta será apreciada. Por favor regresar la completa hoja electrónica antes del 7 de Abril, 2003.

Vea la cejilla "FAQ" para respuestas a preguntas frecuentes. Por Favor Proporcione Comentarios y Clarificaciones en la Cejilla de Notas.

INSTRUCCIONES PARA COMPLETAR EL CUESTIONARIO PARA AEROPUERTOS

En cada tabula de aeropuerto, el cuestionario requiere información del volumen de carga [en toneladas] y el valor de la carga [en pesos] transportados en avión desde un aeropuerto en el año 2000, proyecciones para el año 2020 y la clasificación de esta carga como importación o exportación. El cuestionario solicita se especifique qué porción de la carga es originada en México o tiene destino en México. Para cada aeropuerto hay dos criterios mínimos y 25 criterios cuantificables. Por favor insertar sus respuestas en esta hoja electrónica. Para el manejo terrestre de carga en aeropuertos, el cuestionario requiere que usted especifique la proporción de carga moviéndose por camiones o por tren. El cuestionario requiere la extensión de la pista de aterrizaje para el año 2000 y las dimensiones de la pista en los planes para el año 2020, incluyendo la fecha de terminación de la expansión. Para ser incluir la información proveniente de su estado, el aeropuerto debe estar situado dentro de la franja
de 100 Km . de la frontera entre México-EUA y también ser identificado como aeropuerto internacional de entrada. Hay una cejilla para cada aeropuerto identificado con el nombre de cada uno. Si se omití un aeropuerto, por favor insertarlo en la cejilla de "Otros."

CEJILLAS DE EJEMPLO

Un ejemplo completo de la forma en que la cejilla de aeropuertos debe ser completada está incluido en la cejilla "Ejemplo de Aeropuerto" donde información hipotética sobre el Aeropuerto de Lindbergh ha sido insertada.

PREGUNTAS FRECUENTES: CUESTIONARIO DE AEROPUERTOS

1. ¿Que aeropuertos fueron proporcionados por SourcePoint?

Respuesta: Aeropuertos Mexicanos.
2. ¿Se pueden añadir aeropuertos a la lista?

Respuesta: Sí.
3. ¿Si se decide añadir un aeropuerto, como lo hago?

Respuesta: Usar la cejilla "Otros" a la derecha de la hoja electrónica. Si se va a añadir más de un aeropuerto, por favor insertar cejillas a la derecha. También proporcionar los cambios hechos en la cejilla de "Notas".
4. ¿Podemos borrar un aeropuerto de la lista?

Respuesta: Sí.
5. ¿Si decido borrar un aeropuerto, como lo hago??

Respuesta: Borrar la cejilla en la hoja electrónica. También proporcionar los cambios hechos en la cejilla de "Notas".
6. ¿Cuales son los factores que determinarían si un aeropuerto debe ser añadido o borrado de la lista proporcionada?

Respuesta: Dos factores.
a. Si el aeropuerto esta dentro de los 100 Km . de la frontera entre México-EUA
b. Si el aeropuerto sirve como un punto de entrada internacional
7. ¿Que pasa si no se puede conseguir información especifica acerca de una pregunta en el cuestionario?

Respuesta: Dejar el espacio vacío y explicar en la cejilla de "Notas" qué información, y por qué, fue omitida.
8. ¿A quien puedo contactar para asistencia?

Respuesta: A Santiago Dávila, Teléfono (619) 5955646 o e-mail sda@sourcepoint.org.

EJEMPLO COMPLETADO PARA UN AEROPUERTO CON INFORMACION HIPOTETICA

Criterio Mínimo			
1	¿Está el aeropuerto dentro de los 100 Km . de la frontera Mex/EUA? [S/N]	S	
2	¿El aeropuerto es designado como puerto de entrada nternacional? [S/N]	S	
		Año 2000	Proyecciones Para el Año 2020
Criterio Cuantificable			
3	¿Cuántas pistas de aterrizaje hay en este aeropuerto?	1	1
4	Especifique la longitud de cada pista de aterrizaje [en pies]		
4 a	Pista \#1	9,400	10,500
4b	Pista \#2	N/A	N/A
4c	Pista \#3	N/A	N/A
5	Si la longitud de la pista para el año 2020 es mayor que la del año 2000, especifique la fecha cuando la otra pista será inaugurada		
5a	Pista \#1: Enero 2008		
5b	Pista \#2		
5c	Pista \#3		
6	Especifique el volumen total de la carga [en ton.] exportada e importada en el aeropuerto.	100,000	125,000
6a	Especifique el volumen de carga [en ton.] exportada del aeropuerto.	50,000	62,500
6b	Especifique el volumen de carga [en ton.] importada al aeropuerto.	50,000	62,500
7	Especifique el volumen total de carga [en ton.] exportada e importada en el aeropuerto para/de México.	10,000	15,000
7 a	Especifique el volumen de carga [en ton.] exportada del aeropuerto a MX.	5,000	7,500
7b	Especifique el volumen de carga [en ton.] importada al aeropuerto de MX.	5,000	75,000
8	Especifique el valor monetario de la carga [en millones de dólares] exportada e importada en el aeropuerto.	\$115.0	\$140.0
8a	Especifique el valor de las exportaciones [en millones de dólares] desde el aeropuerto.	\$55.0	\$65.0
8b	Especifique el valor de las importaciones [en millones de dólares] al aeropuerto.	\$60.0	\$75.0
9	Especifique el valor de carga [en millones de dólares] exportada e importada en el aeropuerto para/de México.	\$11.5	\$14.0
9a	Especifique el valor de carga [en millones de dólares] exportada del aeropuerto a MX.	\$5.5	\$6.5
9b	Especifique el valor de carga [en millones de dólares] importada al aeropuerto de MX.	\$6.0	\$7.5
10	¿Cuenta este aeropuerto con servicio de ferrocarril? [S/N]	S	S
10a	Si es el caso, ¿Cuál es el nombre de la compañía de ferrocarril?	BNSF	BNSF
11	¿Qué porción de la carga movilizada por tierra va por tren?	90.0\%	90.0\%
12	¿Qué porción de la carga se transporta en camiones?	10.0\%	10.0\%
Revise el valor de la tonelada usado para contestar las preguntas 5 \& 6			
ton larga = 2,240 libras [], ton corta $=2,000$ libras [\mathbf{X}], ton métrica $=2,200$ libras []			
Fuentes de Información Histórica			
Fuentes de Información para el Futuro Michael Williams			
Para preguntas y aclaraciones en este formulación: Por favor contactar a Santiago Dávila a SourcePoint, Teléfono (619) 595-5635 o e-mail sda@sourcepoint.org.			

AEROPUERTO MEXICANOS

Criterio Mínimo			
1	¿Está el aeropuerto dentro de los 100 Km . de la frontera Mex/EUA? [S/N]		
2	¿El aeropuerto es designado como puerto de entrada nternacional? [S/N]		
		Año 2000	Proyecciones Para el Año 2020
Criterio Cuantificable			
3	¿Cuántas pistas de aterrizaje hay en este aeropuerto?		
4	Especifique la longitud de cada pista de aterrizaje [en pies]		
4a	Pista \#1		
4b	Pista \#2		
4c	Pista \#3		
5	Si la longitud de la pista para el año 2020 es mayor que la del año 2000, especifique la fecha cuando la otra pista será inaugurada		
5a	Pista \#1: Enero 2008		
5b	Pista \#2		
5c	Pista \#3		
6	Especifique el volumen total de la carga [en ton.] exportada e importada en el aeropuerto.		
6a	Especifique el volumen de carga [en ton.] exportada del aeropuerto.		
6b	Especifique el volumen de carga [en ton.] importada al aeropuerto.		
7	Especifique el volumen total de carga [en ton.] exportada e importada en el aeropuerto para/de México.		
7a	Especifique el volumen de carga [en ton.] exportada del aeropuerto a MX.		
7b	Especifique el volumen de carga [en ton.] importada al aeropuerto de MX.		
8	Especifique el valor monetario de la carga [en millones de dólares] exportada e importada en el aeropuerto.		
8a	Especifique el valor de las exportaciones [en millones de dólares] desde el aeropuerto.		
8b	Especifique el valor de las importaciones [en millones de dólares] al aeropuerto.		
9	Especifique el valor de carga [en millones de dólares] exportada e importada en el aeropuerto para/de México.		
9a	Especifique el valor de carga [en millones de dólares] exportada del aeropuerto a MX.		
9b	Especifique el valor de carga [en millones de dólares] importada al aeropuerto de MX.		
10	¿Cuenta este aeropuerto con servicio de ferrocarril? [S/N]		
10a	Si es el caso, ¿Cuál es el nombre de la compañía de ferrocarril?		
11	¿Qué porción de la carga movilizada por tierra va por tren?		
12	¿Qué porción de la carga se transporta en camiones?		
Revise el valor de la tonelada usado para contestar las preguntas 5 \& 6			
ton larga = 2,240 libras [], ton corta = 2,000 libras [], ton métrica $=2,200$ libras []			
Fuentes de Información Histórica			
Fuentes de Información para el Futuro			
Para preguntas y aclaraciones en este formulación: Por favor contactar a Santiago Dávila a SourcePoint, Teléfono (619) 5955635 o e-mail sda@sourcepoint.org.			

NOTAS

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	

PARTE 4-PUERTOS MARITIMOS: VOLUMEN Y VALOR DE LA CARGA INSTRUCCIONES PARA COMPLETAR EL CUESTIONARIO DE PUERTOS MARITIMOS

INTRODUCCION

Este es el cuarto de cinco cuestionarios elaborados con el propósito de reunir información acerca de los sistemas del transporte en su estado. Cada cuestionario es una hoja electrónica en Excel y cada una trata de temas diferentes [carreteras, cruces fronterizos, aeropuertos, puertos marítimos, ferrocarriles y corredores]. Los datos obtenidos en estos cuestionarios se usarán para analizar los corredores de transporte de su estado.
Los estados acordaron proporcionar a SourcePoint los datos para el Estudio de Evaluación de Necesidades de Infraestructura de Transporte Fronterizo [BINS, por sus siglas en inglés] y que es endosado por el Comité Conjunto de Trabajo de México-EUA sobre Planeación y Programación de Transporte.

Para cualquier pregunta, por favor contactar a Santiago Dávila al (619) 595-5635 o e-mail a sda@sourcepoint.org.

DEFINICION DE UN CORREDOR DE TRANSPORTE

Combinación de medios por los que se transportan gente, vehículos y bienes de un lugar a otro. Un corredor de transporte no es solo una carretera o una línea de ferrocarril, sino una combinación de modos.

REGRESAR LA HOJA ELECTRONICA COMPLETADA A SOURCEPOINT

Después de insertar sus respuestas en la hoja electrónica, por favor regresar la hoja a Santiago Dávila a SourcePoint [sda@sourcepoint.org]. Por favor contactar a Santiago Dávila a SourcePoint para cualquier aclaración al (619) 595-5635.

Su oportuna respuesta será apreciada. Por favor regresar la completa hoja electrónica antes del 7 de Abril, 2003.

Vea la cejilla "FAQ" para respuestas a pregentas frecuentes. Por Favor Proporcione Comentarios y Clarificaciones en la Cejilla de Notas.

INSTRUCCIONES PARA COMPLETAR EL CUESTIONARIO DE PUERTOS MARITIMOS

En cada cejilla de puertos marítimos, el cuestionario requiere información del volumen de carga [en toneladas], el numero de contenedores equivalentes a 20 pies y el valor de la carga [en pesos] transportada por barco en el puerto marítimo en el año 2000, proyecciones para el año 2020 y la clasificación de la carga si fue exportada o importada. Además, el cuestionario requiere que usted especifique la porción de la carga originada en los Estados Unidos, o con destino en los Estados Unidos.

Para cada puerto marítimo hay dos criterios mínimos y 24 preguntas cuantificables. Para el movimiento de carga manejado en el puerto marítimo por tierra, el cuestionario requiere que usted especifique la proporción de carga moviéndose por camiones o por tren. El cuestionario requiere la profundidad del canal principal del puerto marítimo para el año 2000 y la profundidad planeada del canal para el año 2020 con la fecha de terminación de la planeada expansión. Para ser incluidos en la información proveniente de su estado, el puerto marítimo debe estar situado entre los 100 Km . de la frontera entre México-US, y también ser identificado como un puerto internacional de entrada. Hay una cejilla para cada puerto marítimo con el nombre del puerto en la cejilla. Si se ha omitido un puerto marítimo, por favor insertarlo usando la cejilla "Otros."

CEJILLAS DE EJEMPLO

Un ejemplo completo de la forma en que la cejilla de puertos debe ser completada esta incluido en la cejilla "Ejemplo" donde información hipotética acerca del Puerto de San Diego ha sido insertada.

PREGUNTAS FRECUENTES: CUESTIONARIO DE PUERTOS MARITIMOS

1. ¿Que aeropuertos fueron proporcionados por SourcePoint?

Respuesta: Puerto Maritímo
2. ¿Se pueden añadir puerto maritimo a la lista?

Respuesta: Sí.
3. ¿Si se decide añadir un puerto maritimo, como lo hago?

Respuesta: Usar la cejilla "Otro" a la derecha de la hoja electrónica. Si se va a añadir más de un puerto maritímo, por favor insertar cejillas a la derecha. También proporcionar los cambios hechos en la cejilla de "Notas."
4. ¿Podemos borrar puertos maritimos de la lista?

Respuesta: Sí.
5. ¿Si decido borrar un puerto maritimo, como lo hago?

Respuesta: Borrar la cejilla en la hoja electrónica. También proporcionar los cambios hechos en la cejilla de "Notas."
6. ¿Cuales son los factores que determinarian si un puerto maritimo debe ser añadido o borrado de la lista proporcionada?

Respuesta: Dos factores.
a. Si el puerto maritímo esta dentro de los 100 Km . de la frontera entre México-EUA
b. Si el Puerto maritímo sirve como un punto de entrada internacional
7. ¿Que pasa si no se puede conseguir información especifica acerca de una pregunta en el cuestionario?

Respuesta: Dejar el espacio vacío y explicar en la cejilla de "Notas" qué información, y por qué, fue omitida.
8. ¿A quien puedo contactar para asistencia?

Respuesta: A Santiago Dávila, Teléfono (619) 595-5646 o e-mail sda@sourcepoint.org.

EJEMPLO COMPLETO DEL PUERTO MARITIMO DE SAN DIEGO CON INFORMACION HIPOTETICA

Criterio Mínimo			
1	¿Esta el puerto marítimo ubicado dentro de los 100 Km . de la frontera Mex/US? [S/N]	S	
2	¿Está el puerto designado como Puerta de Entrada internacional? [S/N]	S	
		Puerto Marítimo	
		Año 2000	Proyecciones Para el Año 2020
Criterio Cuantificable			
3	¿Cual es la profundidad del canal principal [en metros] de este puerto marítimo?	35	42
4	Si la profundidad del canal en el año 2020 es mayor que la del 2000, especifique la fecha en que la nueva profundidad entra en operación.		Marzo 2012
5	Especifique el volumen total de carga [en toneladas] exportadas e importadas por el puerto.	300,000	500,000
5 a	Especifique el volumen de la carga [en toneladas] exportado desde el puerto.	150,000	250,000
5b	Especifique el volumen de la carga [en toneladas] importado por el puerto.	150,000	250,000
6	Especifique el volumen total de carga [en toneladas] exportadas e importadas por el puerto para / de México.	30,000	50,000
6a	Especifique el numero de toneladas exportadas desde el puerto a México.	15,000	25,000
6b	Especifique el numero de toneladas importadas por el puerto desde MX.	15,000	25,000
7	Especifique el numero total de contenedores equivalentes a 20 pies [TEUs] exportados e importados en el puerto.	10,000	30,000
7 a	Especifique el numero de TEUs exportados desde el puerto.	5,000	15,000
7b	Especifique el numero de TEUs importados por el puerto.	5,000	15,000
8	Especifique el numero de TEUs exportado e importado por el puerto de/para México.	500	500
8 a	Especifique el numero de TEUs exportados desde el puerto a México.	250	250
8b	Especifique el numero de TEUs importados por el puerto desde México.	250	250
9	Especifique el valor de la carga [en millones de dólares] exportados e importados por el puerto.	\$50.0	\$140.0
9a	Especifique el valor de la carga exportada desde el puerto.	\$25.0	\$65.0
9b	Especifique el valor de la carga importada por el puerto.	\$25.0	\$75.0
10	Especifique el valor de la carga [en millones de dólares] exportada e importada por puerto de/para México.	\$2.5	\$2.5
10a	Especifique el valor de la carga [en millones de dólares] exportada desde el puerto a México.	\$1.5	\$1.5
10b	Especifique el valor de la carga [en millones de dólares] importada por el puerto de México.	\$1.0	\$1.0
11	¿Es este puerto marítimo servido por una línea de ferrocarril? [S/N]	S	S
11a	Si contesto sí, dé el nombre de la compañía de ferrocarril.	BNSF	BNSF
12	¿Que porción de la carga movilizada por tierra va por tren?	10.0\%	10.0\%
13	¿Que porción de la carga movilizada por tierra va por camiones?	90.0\%	90.0\%

Indique el tipo de tonelada usado para contestar a las preguntas 5 \& 6
tonelada larga $=2,240$ libras [], tonelada corta $=2,000$ libras [\mathbf{X}], tonelada métrica $=2,200$ libras []
Fuentes de Información Histórica
Fuentes de Información Proyectada al Futuro Michael Williams
Por favor contactar a Santiago Dávila en SourcePoint, Teléfono (619) 595-5635 o e-mail sda@sourcepoint.org.

PUERTO MARITIMO

Criterio Mínimo			
1	¿Esta el puerto marítimo ubicado dentro de los 100 Km . de la frontera Mex/US? [S/N]		
2	¿Está el puerto designado como Puerta de Entrada internacional? [S/N]		
		Puerto Marítimo	
		Año 2000	Proyecciones Para el Año 2020
Criterio Cuantificable			
3	¿Cual es la profundidad del canal principal [en metros] de este puerto marítimo?		
4	Si la profundidad del canal en el año 2020 es mayor que la del 2000, especifique la fecha en que la nueva profundidad entra en operación.		
5	Especifique el volumen total de carga [en toneladas] exportadas e importadas por el puerto.		
5a	Especifique el volumen de la carga [en toneladas] exportado desde el puerto.		
5b	Especifique el volumen de la carga [en toneladas] importado por el puerto.		
6	Especifique el volumen total de carga [en toneladas] exportadas e importadas por el puerto para / de México.		
6a	Especifique el numero de toneladas exportadas desde el puerto a México.		
6b	Especifique el numero de toneladas importadas por el puerto desde MX.		
7	Especifique el numero total de contenedores equivalentes a 20 pies [TEUs] exportados e importados en el puerto.		
7 a	Especifique el numero de TEUs exportados desde el puerto.		
7b	Especifique el numero de TEUs importados por el puerto.		
8	Especifique el numero de TEUs exportado e importado por el puerto de/para México.		
8a	Especifique el numero de TEUs exportados desde el puerto a México.		
8b	Especifique el numero de TEUs importados por el puerto desde México.		
9	Especifique el valor de la carga [en millones de dólares] exportados e importados por el puerto.		
9a	Especifique el valor de la carga exportada desde el puerto.		
9b	Especifique el valor de la carga importada por el puerto.		
10	Especifique el valor de la carga [en millones de dólares] exportada e importada por puerto de/para México.		
10a	Especifique el valor de la carga [en millones de dólares] exportada desde el puerto a México.		
10b	Especifique el valor de la carga [en millones de dólares] importada por el puerto de México.		
11	¿Es este puerto marítimo servido por una línea de ferrocarril? [S/N]		
11a	Si contesto sí, dé el nombre de la compañía de ferrocarril.		
12	¿Que porción de la carga movilizada por tierra va por tren?		
13	¿Que porción de la carga movilizada por tierra va por camiones?		

Indique el tipo de tonelada usado para contestar a las preguntas 5 \& 6
tonelada larga = 2,240 libras [], tonelada corta $=2,000$ libras [], tonelada métrica $=2,200$ libras []

Fuentes de Información Histórica

Fuentes de Información Proyectada al Futuro

Por favor contactar a Santiago Dávila en SourcePoint, Teléfono (619) 595-5635 o e-mail sda@sourcepoint.org.

NOTAS

Notas	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
20	

PARTE 5- CORREDORES INSTRUCCIONES PARA COMPLETAR EL CUESTIONARIO DE CORREDORES

INTRODUCCION

Este es el quinto de cinco cuestionarios elaborados con el propósito de reunir información acerca de los sistemas del transporte en su estado. Cada cuestionario es una hoja electrónica en Excel y cada una trata de temas diferentes [carreteras, cruces fronterizos, aeropuertos, puertos marítimos, ferrocarriles y corredores]. Los datos obtenidos en estos cuestionarios se usarán para analizar los corredores de transporte de su estado.

Los estados acordaron proporcionar a SourcePoint los datos para el Estudio de Evaluación de Necesidades de Infraestructura de Transporte Fronterizo [BINS, por sus siglas en inglés] y que es endosado por el Comité Conjunto de Trabajo de México-EUA sobre Planeación y Programación de Transporte.

Para cualquier pregunta, por favor contactar a Santiago Dávila al (619) 595-5635 o e-mail a sda@sourcepoint.org.

DEFINICION DE UN CORREDOR DE TRANSPORTE

Combinación de medios por los que se transportan gente, vehículos y bienes de un lugar a otro. Un corredor de transporte no es solo una carretera o una línea de ferrocarril, sino una combinación de modos.

REGRESAR LA HOJA ELECTRONICA COMPLETADA A SOURCEPOINT

Después de insertar sus respuestas en la hoja electrónica, por favor regresar la hoja a Santiago Dávila a SourcePoint [sda@sourcepoint.org]. Por favor contactar a Santiago Dávila a SourcePoint para cualquier aclaración al (619) 595-5635.

Su oportuna respuesta será apreciada. Por favor regresar la completa hoja electrónica antes del 7 de Abril, 2003.

Vea la cejilla "FAQ" para respuestas a pregentas frecuentes. Por Favor Proporcione Comentarios y Clarificaciones en la Cejilla de Notas.

INSTRUCCIONES PARA COMPLETAR EL CUESTIONARIO DE CORREDORES

En la Cejilla de corredores, el cuestionario requiere que usted identifique y nombre los corredores que están dentro de los 100 Km . de la frontera entre México-US. Asigne instalaciones a los corredores poniendo una X en cada casilla para especificar el corredor al cual cada instalación pertenece. Una instalación puede ser una carretera o un ferrocarril. Use los resultados de la Parte 1 - Carreteras para
asignar carreteras a los corredores. Una carretera puede ser asignada a más de un corredor [ver tabula de Ejemplo]. Revisar la lista de instalaciones proporcionada para asegurarse que esta completa agregar o cancelar si necesario. Por favor proporcionar mapas para asistir la descripción de los sistemas de transporte. Por favor remita por correo electrónico mapas impresos o archivos electrónicos en formato [pdf] de Adobe Acrobat, o a Joint Photographic Expert Group [JPEG] archivo electrónico. Envíe ambos a Santiago Dávila, SourcePoint, 401 B Street, Suite 800, San Diego, CA 92101-4231.

CEJILLAS DE EJEMPLO

Un ejemplo completo de la forma en que la cejilla de corredores debe ser completada esta incluido en la cejilla "Ejemplo" donde unos nombres de corredores, carreteras y ferrocarriles han sido insertados.

CEJILLA DE INFORMACION SOCIO-ECONOMICA

En la cejilla de información socio-económica, por favor proporcionar la siguiente información socioeconómica para su estado y los municipios que están dentro de los 100 Km . de la frontera México-US.

1. La población en 1995, 2000 y la proyección para 2020
2. El número de empleados en 1995, 2000 y la proyección para 2020
3. El valor monetario del comercio con US para 1995, 2000 y la proyección para 2020 (en pesos Mexicanos).
4. Ingreso Personal [en pesos] para 1995, 2000 y la proyección para 2020.

Información para el 1995 es requerida ya que significa el periodo del comienzo del Tratado de Libre Comercio de América del Norte [NAFTA, por sus siglas en inglés].

PREGUNTAS FRECUENTES: CUESTIONARIO DE PUERTOS MARITIMOS

1. ¿Donde consigo los nombres para cada corredor?

Respuesta: Cada estado debe nominar los corredores.
2. ¿Pueden carreteras y ferrocarriles pertenecer a mas de un corredor?

Respuesta: Sí. Cada estado decide a que corredor, o grupo de corredores, pertenecen las carreteras y los ferrocarriles. Si una carretera pertenece a más de un corredor, se tiene que dividir por segmento y esto es incluido en la Parte 1.
3. ¿Se pueden añadir o borrar carreteras de la lista?

Respuesta: Sí. Utilice la información de la Parte 1 para revisar la lista de carreteras en el cuestionario de corredores. Si se hacen cambios, por favor especificar ellos en la cejilla de "Notas."
4. ¿Que pasa si no se puede conseguir información especifica acerca de una pregunta en el cuestionario?

Respuesta: Dejar el espacio vacío y explicar en la cejilla de "Notas" qué información, y por qué, fue omitida.
5. ¿A quien puedo contactar para asistencia?

Respuesta: A Santiago Dávila, Teléfono (619) 595-5646 o e-mail sda@sourcepoint.org.

EJEMPLO COMPLETO DE CORREDORES E INSTALACIONES EN BAJA CALIFORNIA

	<============= Corredores =============>>						Comentarios
	A	B	C	D	E	F	
Nombre del Corredor [definido por el usuario]: Instalación	West Coast	Alameda	Economic Lifeline				
Carreteras - poner una X en cada casilla							
La carretera tiene que estar dentro de los 100 Km . de la frontera México-EUA y servir una Puerta de Entrada internacional							
Interstate - 5 [I-5]	X						
I-8	X	X					I-8 esta situada en 2 corredores.
I-15			X				
Otras:							
Ferrocarriles - poner una x en cada casilla							
La línea de ferrocarril tiene que estar dentro de los 100 Km . de la frontera México-EUA y servir una Puerta de Entrada internacional							
BNSF	X						
Otras:							
Preguntas acerca de esta página: Por favor contactar a Santiago Dávila en SourcePoint para cualquier aclaración al TEL: (619) 5955635 o e-mail a sda@sourcepoint.org.							

EJEMPLO COMPLETO DE CORREDORES E INSTALACIONES EN CALIFORNIA

INFORMACION SOCIO-ECONOMICA DE SU ESTADO Y MUNICIPIOS: TODOS LOS MUNICIPIOS DEBEN ESTAN DENTRO DE LOS 100 KM. DE LA FRONTERA ENTRE MEXICO-US.

	1995	2000	2020
Proporcione la siguiente información para el estado de :			
Población:			
Empleo [número de empleados]:			
Comercio México-EUA [en pesos]:			
Ingreso Personal [en pesos]:			
Proporcione la siguiente información para el municipio de:			
Población:			
Empleo [número de empleados]:			
Comercio México-EUA [en pesos]:			
Producto Regional [en pesos] 0:			
Ingreso Personal [en pesos]:			
Proporcione la siguiente información para el municipio de:			
Población:			
Empleo [número de empleados]:			
Comercio México-EUA [en pesos]:			
Producto Regional [en pesos] 0:			
Ingreso Personal [en pesos]:			
Proporcione la siguiente información para el municipio de:			
Población:			
Empleo [número de empleados]:			
Comercio México-EUA [en pesos]:			
Producto Regional [en pesos] 0:			
Ingreso Personal [en pesos]:			
Por favor especifique el tipo de cambio (pesos/dólar) para la información proporcionada, por año			
1995 [] 2000[] 2020[]			
Fuente de Datos:			
Población:			
Empleo:			
Comercio con US:			
Salario Personal:			
Sugerencias para fuentes de datos históricos [si necesita ayuda]:			
Población: = Instituto Nacional de Estadística, Geografía e Informática, http://www.inegi.gob.mx/			
Empleo = Instituto Nacional de Estadística, Geografía e Informática, http://www.inegi.gob.mx/			
Comercio con EUA = Instituto Nacional de Estadística, Geografía e Informática, http://www.inegi.gob.mx/			
Salario Personal = Instituto Nacional de Estadística, Geografía e Informática, http://www.inegi.gob.mx/ Preguntas acerca de esta pagina: Por favor contactar a Santiago Dávila en SourcePoint para cualquier aclaración al TEL: (619)595-5635 o e-mail a sda@sourcepoint.org			

NOTAS

Notas	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	

APPENDIX 8
 COORIDOR EVALUATION AND HIGHWAY DATA

CORRIDOR EVALUATION ARIZONA RESULTS AND DATA

Corridor evaluations are conducted to determine the corridors with the greater needs. This corridor evaluation uses quantifiable data with a systematic method to evaluate transportation corridors. Corridors are combinations of modes that move people, vehicles and goods from one location to another. To facilitate the evaluation process, the computations are calculated in formulas contained in the spreadsheets that will be sent to each of the states. Each evaluation spreadsheet is tailored to each state, thus each state's evaluation spreadsheet contains unique data - even though the methodology is the same. It is envisioned that each state will use its spreadsheet to conduct corridor evaluations, at its discretion.

Overall, the evaluation is conducted by compiling data, allocating the data to corridors and comparing corridors [within a state] to one another. There are 16 indicators 1 for which we compile data for each corridor. The overall evaluation uses two broad categories of data:

1. Historical Data - data for 16 indicators for the year 2000.
2. Change Data - a combination of actual changes for the 16 indicators from 2000 to 2020 and percent changes for the same 16 indicators from 2000 to 2020.

Conducting the evaluations is based on the ordering of data from highest to lowest to determine need. For example, assume there are three corridors in a state and the Average Annual Daily Traffic [AADT] in Corridor A is 157,000, the AADT for Corridor B is 450,000 and the AADT for Corridor C is 30,000. In this example, Corridor B is listed first because it has the highest AADT [450,000], its evaluation results are one, and it has the highest need. Corridor A is listed second because its AADT is 157,000 [second highest], its evaluation results are two, and it has the second highest need. Corridor C is listed third because it has the lowest AADT [30,000], its evaluation results are three and it has the lowest need. This process is repeated for all 16 indicators with data for calendar year 2000, for all 16 indicators for the change in the data between 2000 and 2020, and all 16 indicators for the percent change in the data between 2000 and 2020. There are a total of 48 evaluations compiled if all the data are present.

Higher values for the indicators represent more traffic (AADT), more congestion (LOS), more trade (dollar value of air, maritime, rail and truck cargo across POEs), more vehicles (number of passenger vehicles, trucks, buses, and rail cars across a POE), which point to both the relative importance of the corridor and its infrastructure needs. The highest value is given "first place" or a score of one and represents the highest need.

[^13]The evaluation results are summed by mode. For example, there are four indicators for highways AADT, the highway length [in miles], the level of service [LOS] and the highway capacity at peak hours. If a corridor was listed first for each indicator, its highway score would be a four [a score of one for each indicator]. This is done for Land Ports of Entry [POE - five indicators], airports [one indicator], maritime ports [two indicators] and railroads [four indicators]. The lower the score, the higher the listing. It follows that the lowest mode score represents the corridor with the greatest need for that mode.

The overall score for each corridor is then calculated by summing the five modes scores [one each for highways, POE, airports, maritime ports and railroads]. The corridor with the lowest overall score is listed first and has the highest overall need. The corridor with the second lowest overall score is listed second and has the second highest need. The corridor with the highest overall score is listed third and has the lowest overall need.

Recall there is one historical component and there are two change components (change in absolute terms and percent change). Without any adjustments, the change component has twice the impact on the final result as the historical data. It was decided that the historical values are as important as the projected changes. To accomplish equal weighting, the historical scores are multiplied by two.

GENERAL DESCRIPTION OF ARIZONA'S CORRIDORS

Corridors

Arizona has identified one corridor for the study and it is called CANAMEX.

Highways

The CANAMEX corridor is composed of two highways: Interstate 19 [I-19] and State Road 189 [SR 189]. Both highways run North-South. No data are available for SR189 and only AADT and segment length are available for l-19. No data on Level of Service [LOS] or capacity is provided. Therefore, the level of current or future congestion on Arizona highways cannot be established.

Land Ports of Entry [POE]

There are seven land POEs in Arizona: San Luis, Lukeville, Sasabe, Naco, Nogales-DeConcini, Nogales Mariposa, and Douglas. Nogales-Mariposa and Nogales DeConcini are directly connected to SR 189. In calendar year 2000, about 345,000 trucks carrying 42.9 million tons of goods were transported through north across the US-M exico border at Land POE in Arizona. Also in calendar year 2000, about 10.3 million passenger vehicles crossed the US-Mexico border north into Arizona through the seven land POEs.

Airports

There are seven airports in Arizona that are within 100 km of the US-Mexico border. Four of the airports are designated as international ports of entry and are included in this evaluation. Those airports are: Bisbee-Douglas International Airport, Douglas Municipal Airport, Nogales International

Airport and Tucson International Airport. Of the four airports used in this evaluation, Tucson has the longest runway length at 10,994 feet. The four airports in this study transported about 35,000 tons of goods in calendar year 2000.

Railroads

There is one railroad that operates in the CANAMEX corridor and it is the Union Pacific. The Union Pacific rail lines cross the US-Mexico border at the Nogales-DeConcini POE. UP transported about 332,400 tons and 8,700 twenty foot equivalent containers across the US-Mexico border north into Arizona in calendar year 2000.

Maritime Ports

Arizona has no maritime ports and no plans to construct a maritime port between now and 2020.
Source: Arizona BINSTechnical Committee representative.

ANALYSIS OF CORRIDOR EVALUATION RESULTS

There is only one corridor identified in Arizona and it is called CANAMEX. Because there is only one corridor, there are no corridor comparisons.

Historical Data

This discussion reviews highway, land POE, airport, maritime port and rail data and results. With regard to the highways, the CANAMEX corridor averaged about 24,000 vehicles per day over its 63 miles in 2000. Arizona did not provide level of service or capacity data therefore it is not possible to ascertain the level of congestion.

The 345,000 trucks that crossed the US-Mexico border passing through the seven land POEs in Arizona during calendar year 2000, transported more than 99% of the volume of all goods moved by land across the US-Mexico border at the seven land POEs during calendar year 2000. The port of NogalesMariposa had the most truck crossings with about 254,700 trucks, or about 74% of the state total. Of the 10.3 million passenger vehicles that crossed the US-Mexico border north into Arizona in calendar year 2000, about 29% passed through the Nogales DeConcini port of entry.

For the approximately 3,400 rail cars that crossed the US-Mexico border at Nogales-DeConcini in calendar year 2000, the average ton move per rail car is about 98 tons.

Change Data

This discussion will review highway, land POE, airport and rail data for both absolute changes and percent changes. With regard to absolute changes in highway data, average annual daily traffic [AADT] on the CANAMEX corridor increases 6,023 between calendar year 2000 and 2020 while the highway length of I-19 remains constant.

Truck crossings at land POE are projected to increase by about 382,200 between 2000 and 2020 while passenger vehicles crossing at the land POE are projected to increase by about 5.3 million vehicles between 2000 and 2020. For railroads, the total tonnage is projected to increase by about 223,000 while TEUs are projected to increase by about 5,870 - both between 2000 and 2020. For airports, the total volume of tons transported at the airports is projected to increase by about 31,000 tons between 2000 and 2020.

With regard to percent changes in highway data, AADT is projected to grow about 25% between 2000 and 2020. The number of trucks crossing the land POE is projected to increase by about 211\% between 2000 and 2020 while the number of passenger vehicles crossing the US-M exico border north into Arizona is projected to increase by about 52%. With respect to railroads, the number of rail cars crossing the US-Mexico border into Arizona is projected to increase about 167% between calendar year 2000 and 2020. With respect to airport tonnage, it is projected to increase about 89% between 2000 and 2020.

Table 1
Summary Corridor Results

	Corridor Scores ${ }^{1}$			Evaluation Results		
CANAMEX	A	B	C	A	B	C
Historical Data for 2000^{2}						
Highways	4			1		
Land Ports of Entry	8			1		
Airports	2			1		
Maritime Ports ${ }^{3}$						
Railroads	8			1		
Sum of Historical Scores:	22			1		
Changes Betw een 2000 and 20204						
Highways	4			1		
Land Ports of Entry	8			1		
Airports	2			1		
Maritime Ports ${ }^{3}$						
Railroads	8			1		
Sum of Change Scores:	22			1		
Overall Scores ${ }^{5}$:	44					
Overall Result:	1					
Notes:						
The Corridor Scores are from the results in Tables 2, 4 and 5. Historical results from Table 2. To insure equal weighting with the Changes scores, the Historical corridor scores are multiplied by two.						
3 Arizona has no maritime ports. 4 The Changes Scores is the sum of the corrid Corridor Percent Changes [Table 5]. 5 The Overall Score is the sum of the Historic Between 2000 and 2020 scores are equally	and ed.			the sco	resul e C	

Table 2
Corridor Data and Results For 2000

	Corridor Raw Data			Evaluation Results		
CANAMEX	A	B	C	A	B	C
Highways						
Average Annual Daily Traffic	24,026			1		
Highway Length [in miles]	63.090			1		
LOS [A =1 to F3 =9]						
Capacity at Peak Hour						
		Highway S		2		
		Overall Hig	sult	1		
Land Port of Entry Border Crossing						
Number trucks	344,945			1		
Total volume [tons]	42,925,707			1		
Value of goods Millions\$	\$8,308			1		
\#passenger vehicles \& buses	10,321,419			1		
		POE Scores		4		
		Overall PO		1		
Airports						
Total volume [tons]	34,835			1		
		Airport Scor		1		
		Overall Air		1		
Maritime Ports - NONE						
Total volume [tons]						
Total number TEUs						
		Maritime P				
		Overall M a	esult			
Railroads Border Crossing at POE						
Number rail cars	3,392			1		
Total volume [tons]	332,417			1		
Total Number TEUs	8,748			1		
Value of goods Millions \$	\$1,856			1		
		Railroad S		4		
		Overall Rail	sult	1		
Total AADT in One Corridor	Share of	AADT A mo	dors			
24,026	100.0\%	0.0\%	0.0\%			

Notes:
POE, Airport \& Maritime port data are assigned to Corridors based on AADT distribution.
Historical data from Arizona BINS Technical Committee Representative, see Tables 6-9 for details.

Lower score represents greater need.

Table 3
Corridor Data and Results For 2020

	Corridor Raw Data			Evaluation Results		
CANAMEX	A	B	C	A	B	C
Highways						
Average Annual Daily Traffic	30,049			1		
Highway Length [in miles]	63.090			1		
LOS[A=1 to F3 =9]						
Capacity at Peak Hour						
		Highw ay Scores		2		
		Overall Highway Result		1		
Land Port of Entry Border Crossing						
Number trucks	727,144			1		
Total volume [tons]	90,487,390			1		
Value of goods Millions \$	\$29,826			1		
\#passenger vehicles \& buses	15,659,112			1		
		POE Scores		4		
		Overall POE Result		1		
Airports						
Total volume [tons]	65,850			1		
		Airport Scores		1		
		Overall Airport Result		1		
M aritime Ports - NONE						
Total volume [tons]						
Total number TEUs						
		M aritime Port Score				
		Overall M aritime Result				
Railroads Border Crossing at POE						
Number rail cars	5,668			1		
Total volume [tons]	555,469			1		
Total Number TEUs	14,618			1		
Value of goods Millions \$	\$5,314			1		
		Railroad Scores		4		
		Overall Railroad Result		1		
Total AADT in One Corridor	Share of AADT Among Corridors					
30,049	100.0\%	0.0\%	0.0\%			
POE, Airport \& Maritime port data are assigned to Corridors based on AADT distribution. Forecastsfor highway and airport are from Arizona BINSTechnical Committee representative. See Tables 6 and 8 for details Other forecasts are derived from secondary sources. See Tables 7 for details.						

Table 4
Corridor Changes and Results, 2000-2020

	Corridor Raw Data			Evaluation Results		
CANAMEX	A	B	C	A	B	C
Highways						
Average Annual Daily Traffic	6,023			1		
Highway Length [in miles]	0.000			1		
LOS [A=1 to F3 = 9]						
Capacity at Peak Hour						
		Highway		2		
		Overall Hi	Result	1		
Land Port of Entry Border Crossing						
Number trucks	382,199			1		
Total volume [tons]	47,561,683			1		
Value of goods Millions \$	\$21,518			1		
\# passenger vehicles \& buses	5,337,693			1		
		POE Score		4		
		Overall PO		1		
Airports						
Total volume [tons]	31,015			1		
		Airport Scor		1		
		Overall Ai	esult	1		
Maritime Ports - NONE						
Total volume [tons]						
Total number TEUs						
		Maritime	re			
		Overall M	Result			
Railroads Border Crossing at POE						
Number rail cars	2,276			1		
Total volume [tons]	223,052			1		
Total Number TEUs	5,870			1		
Value of goods Millions \$	\$3,458			1		
		Railroad S		4		
		Overall Rail	Result	1		
Total AADT in One Corridor	Share of	ADT Amon	dors			
6,023	100.0\%	0.0\%	0.0\%			

Notes:

POE, Airport \& Maritime port data are assigned to Corridors based on AADT distribution.
Differences are estimated by subtracting the year 2000 data from the 2020 projections.
See Tables 6-9 for details.

Lower score represents greater need.

Table 5
Corridor Percent Changes and Results, 2000-2020

	Corridor Raw Data			Evaluation Results		
CANAMEX	A	B	C	A	B	C
Highways						
Average Annual Daily Traffic	25.1\%			1		
Highway Length [in miles]	0.0\%			1		
LOS [A=1 to F3 =9]						
Capacity at Peak Hour						
		Highw ay Scores		2		
		Overall Highw ay Result		1		
Land Port of Entry Border Crossing						
Number trucks	210.8\%			1		
Total volume [tons]	210.8\%			1		
Value of goods Millions\$	359.0\%			1		
\#passenger vehicles \& buses	51.7\%			1		
		POE Scores		4		
		Overall POE Result		1		
Airports						
Total volume [tons]	89.0\%			1		
		Airport Scores		1		
		Overall Airport Result		1		
M aritime Ports - NONE						
Total volume [tons]						
Total number TEUs						
		M aritime Port Score				
		Overall Maritime Result				
Railroads Border Crossing at POE						
Number rail cars	167.1\%			1		
Total volume [tons]	167.1\%			1		
Total Number TEUs	167.1\%			1		
Value of goods Millions\$	286.3\%			1		
		Railroad Scores		4		
		Overall Railroad Result		1		
Notes: See Tables 6-9 for details. Lower score represents greater need.						

Table 6 Highway Data for the CANAMEX Corridor [Corridor A]

Highway Factors	Year	Year	Change, 2000 to 2020	
	2000	2020	Data	Per Cent
AADT	24,026	30,049	6,023	25.1%
Highway Length	63.090	63.090	0.000	0.0%
LOS[A to F]				
LOS\#				
Capacity				
Notes: All data are from Interstate 19 LOS isthe Level of Service AADT is Average Annual Daily Traffic Highway length is in miles Source: Arizona BINSTechnical Committee representative				

Table 7
Land Ports of Entry [POE] Crossing Data

	San Luis	Lukeville	Sasabe	Nogales-De	Nogales-M a	Naco	Douglas	Total
Federal inspection facilities at POE?	Yes							
Northbound POE Crossing Data for $2000{ }^{1}$								
Number trucks	40,348	3,840	2,652	0	254,694	9,817	33,594	344,945
Tons of goods	326,577	3,673	----	0	42,303,974	79,109	212,374	42,925,707
Value [Millions\$] moved by truck	\$816.8	\$2.9	----	\$0.0	\$6,654.7	\$186.9	\$646.9	\$8,308.2
Number of passenger vehicles	2,597,835	400,493	32,823	2,998,046	1,686,401	339,196	2,252,216	10,307,010
Number of buses	38	404	0	0	8,899	0	5,068	14,409
Number passenger vehicles \& buses	2,597,873	400,897	32,823	2,998,046	1,695,300	339,196	2,257,284	10,321,419
Number of rail cars	0	0	0	3,392	0	0	0	X
Volume of tons moved by rail	0	0	0	332,417	0	0	0	X
Number of TEUs moved by rail	0	0	0	8,748	0	0	0	X
Value [Millions \$] moved by rail	\$0	\$0	\$0	\$1,856.1	\$0	\$0	\$0	X
Northbound POE Crossing Data for 2020²								
Number trucks								727,144
Tons of goods								90,487,390
Value [Millions \$] moved by truck								\$29,826.4
Number of passenger vehicles								X
Number of buses								X
umber passenger vehicles \& buses								15,659,112
Number of rail cars				5,668				X
Volume of tons moved by rail				555,469				X
Number of TEUs moved by rail				14,618				X
Value [Millions\$] moved by rail				\$5,314.0				X
Per Cent Change in POE Data: 2000 to 2020								
Number trucks ${ }^{3}$								210.8\%
Tons of goods ${ }^{3}$								210.8\%
Value [Millions \$] moved by truck ${ }^{3}$								359.0\%
Number of passenger vehicles								X
Number of buses								X

	San Luis	Lukeville	Sasabe	Nogales-De	Nogales-M a	NaCo	Douglas	Total
Numb. passenger vehicles \& buses ${ }^{4}$								51.7\%
Number of rail cars ${ }^{5}$				167.1\%				X
Volume of tons moved by rail ${ }^{5}$				167.1\%				X
Number of TEUs moved by rail ${ }^{5}$				167.1\%				X
Value [Millions \$] moved by rail ${ }^{5}$				286.3\%				X

Notes

Number of trucks = northbound trucks that cross the US-Mexico border
Tons of goods = carried by northbound trucks that cross the USM exico border.
Value [Millions \$] moved by truck = value of goods moved by northbound trucks that cross the US-Mexico border.
Number of passenger vehicles = northbound passenger vehicles that cross the US-M exico border.
Number of buses = northbound buses that cross the US-Mexico border.
Number passenger vehides \& buses = sum of northbound passenger vehicles and buses that cross the US-M exico border
Number of rail cars = northbound rail cars that cross the USM exico border.
Volume of tons moved by rail = transported by the northbound rail cars that cross the US-M exico border.
Number of TEUs moved by rail =Twenty foot Equivalent containers [TEUs] moved by rail that are northbound and cross the USM exico border.
Value [Millions \$] moved by rail = value of goods transported by northbound rail cars that cross the US-Mexico border.
Cells are X out when no totals are intended. Rail data, for example, are assigned to corridors by the BINS State Technical Committee representative. This makes railroads
different from airports, maritime ports, passenger vehicles \& buses, and trucks that are summed and distributed to the corridors using the distribution of AADT.
The Port of Sasabe gets a small number of commercial shipments that are not captured in the automated system.

Sources:

1 From Arizona BINSTechnical Committee representative.
2 Derived my multiplying the 2000 data by the growth rates.
The grow th rates for trucks, tons and dollars are derived from data published by the Office of Freight Management and Operations, FHWA, US Department of Transportation, "Freight Transportation Profile - Arizona". There are absolute values forecast for the year 2020 for tons and dollarswith 1998 data as the base year. Growth rates are calculated for the 22 year period, and 20 year growth rates are estimated. These 20-year growth rates are the ones used in this table. For tons and trucks the compound annual growth rate is 3.8%. For the value of goods moved by truck, the compound annual growth rate is 7.7%.
4 The growth rate for passenger vehicles and buses is the same as that observed for the change in Average Annual Daily Traffic [AADT] in the highway segments nearest the US-M exico border. These AADT data were obtained from the $1-19$ data provided by the Arizona BINS Technical representative
l-19 Segment 1 AADT in 2000:
10,614 Change between $2000 \& 2020$ in Segment 1:
5,489
I-19 Segment 1 AADT in 2020:
16,103 Percent increase in AADT in Segment 1:
51.7\%

The 51.7% is used to forecast the number of border crossings for passenger vehides and buses in 2020.
5 The growth rates for rail cars, tons, TEUs \& dollars are derived from data published by the Office of Freight Management and Operations, FHWA, US Department of Transportation, "Freight Transportation Profile - Arizona". There are abso lute values forecast for the year 2020 for tons and dollars with 1998 data as the base year. Growth rates are calculated for the 22 year period, and 20 year growth rates are estimated. These 20 -year growth rates are the ones used in this table. For rail cars, tons of goods moved, and TEUs moved, the compound annual growth rate is 2.6%. For the value of goods moved by rail the compound annual growth rate is 5.4%.

Table 8
Airport Data

	BisbeeDouglas Intl	Cochise College	Douglas Municipal	Libby	Nogales International	Tucson	Yuma	Total
Within 100 km of the US-M exico Border?	Yes							
Designated as an International POE?	Yes	No	Yes	No	Yes	Yes	No	
Historical Data for 2000								
Longest runway length	7,290		5,760		7,199	10,994		10,994
Tons of goods exported \& imported	unknown		unknown		435	34,400		34,835
Airport served by railroad facility?	No		No		No	Yes		X
If yes, name of railroad						Union Pacific		X
On-land movement of air freight	X	X	X	X	X	X	X	X
Share of goods moved by truck	unknown		unknown		100.0\%	unknown		X
Share of goods moved by railroad	unknown		unknown		0.0\%	unknown		X
Projections for 2020								
Longest runway length	8,700		5,760		7,199	11,000		11,000
Date becomes operational			unknown					X
Tons of goods exported \& imported	unknown		unknown		950	64,900		65,850
Airport served by railroad facility?			N/A		No	Yes		X
If yes, name of railroad						Union Pacific		X
On-land movement of air freight	X	X	X	X	X	X	X	X
Share of goods moved by truck	unknown		unknown		100.0\%	unknown		
Share of goods moved by railroad	unknown		unknown		0.0\%	unknown		
Per Cent Change: 2000 to 2020								
Longest runway length								0.1\%
Tons of goods exported \& imported								89.0\%

Note:
Only data for facilities that meet minimum criteria are included.
Source: Arizona BINSTechnical Committee representative

Table 9 Maritime Port Data

There are NO MARITIME PORTS in Arizona

CORRIDOR EVALUATION BAJA CALIFORNIA RESULTS AND DATA

Corridor evaluations are conducted to determine the corridors with the greater needs. This corridor evaluation uses quantifiable data with a systematic method to evaluate transportation corridors. Corridors are combinations of modes that move people, vehicles and goods from one location to another. To facilitate the evaluation process, the computations are calculated in formulas contained in the spreadsheets that will be sent to each of the states. Each evaluation spreadsheet is tailored to each state, thus each state's evaluation spreadsheet contains unique data - even though the methodology is the same. It is envisioned that each state will use its spreadsheet to conduct corridor evaluations, at its discretion.

Overall, the evaluation is conducted by compiling data, allocating the data to corridors and comparing corridors [within a state] to one another. There are 16 indicators 1 for which we compile data for each corridor. The overall evaluation uses two broad categories of data:

1. Historical Data - data for 16 indicators for the year 2000.
2. Change Data - a combination of actual changes for the 16 indicators from 2000 to 2020 and percent changes for the same 16 indicators from 2000 to 2020.

Conducting the evaluations is based on the ordering of data from highest to lowest to determine need. For example, assume there are three corridors in a state and the Average Annual Daily Traffic [AADT] in Corridor A is 157,000, the AADT for Corridor B is 450,000 and the AADT for Corridor C is 30,000. In this example, Corridor B is listed first because it has the highest AADT [450,000], its evaluation results are one, and it has the highest need. Corridor A is listed second because its AADT is 157,000 [second highest], its evaluation results are two, and it has the second highest need. Corridor C is listed third because it has the lowest AADT [30,000], its evaluation results are three and it has the lowest need. This process is repeated for all 16 indicators with data for calendar year 2000, for all 16 indicators for the change in the data between 2000 and 2020, and all 16 indicators for the percent change in the data between 2000 and 2020. There are a total of 48 evaluations compiled if all the data are present.

Higher values for the indicators represent more traffic (AADT), more congestion (LOS), more trade (dollar value of air, maritime, rail and truck cargo across POEs), more vehicles (number of passenger vehicles, trucks, buses, and rail cars across a POE), which point to both the relative importance of the corridor and its infrastructure needs. The highest value is given "first place" or a score of one and represents the highest need.

[^14]The evaluation results are summed by mode. For example, there are four indicators for highways AADT, the highway length [in miles], the level of service [LOS] and the highway capacity at peak hours. If a corridor was listed first for each indicator, its highway score would be a four [a score of one for each indicator]. This is done for Land Ports of Entry [POE - five indicators], airports [one indicator], maritime ports [two indicators] and railroads [four indicators]. The lower the score, the higher the listing. It follows that the lowest mode score represents the corridor with the greatest need for that mode.

The overall score for each corridor is then calculated by summing the five modes scores [one each for highways, POE, airports, maritime ports and railroads]. The corridor with the lowest overall score is listed first and has the highest overall need. The corridor with the second lowest overall score is listed second and has the second highest need. The corridor with the highest overall score is listed third and has the lowest overall need.

Recall there is one historical component and there are two change components (change in absolute terms and percent change). Without any adjustments, the change component has twice the impact on the final result as the historical data. It was decided that the historical values are as important as the projected changes. To accomplish equal weighting, the historical scores are multiplied by two.

GENERAL DESCRIPTION OF BAJA CALIFORNIA'S CORRIDORS

Corridors

Baja has identified 12 corridors for the evaluation and each corridor represents a highway segment and is identified by a letter. The corridor names, an identification letters [A to L], and the highway numbers are contained in Table 5 [page 14]. Most tables contain the highway name and identification letter Corridor K [Central Camionera Garita] does not have trucks move along its roadway.

Highways

The highways that are specified in this evaluation are highways $M X-1 D, M X-1, M X-2 D, M X-2, M X-3$, MX-5, BCN-2 and two local roads [Via Rapida Oriente \& Boulevard Bella Artes].

Land Ports of Entry [POE]

There are six land POEs in Baja: Puerta Mexico, Mesa de Otay, Tecate, Mexicali, Mexicali-Este, and Algodones. In calendar year 2000, about 925,000 trucks crossed the border traveling south into Baja through four land POEs. Also in calendar year 2000, about 22.3 million passenger vehicles crossed the border into Baja through the six land POEs.

Airports

There are three airports located within 100 km of the US-Mexico border, but only the Mexicali and Tijuana airports are included in this evaluation because they are the only two airports designated as international ports of entry. The longest runway at both airports is 2,600 meters. During calendar year 2000, airplanes arriving and departing at the Mexicali and Tijuana airports transported about 76,000 tons of goods

Railroads

There are two railroads that operate within 100 km of the U.S.-Mexico border: the Ferrocarnil [FFRR] Via Corta Tijuana-Tecate, and the Ferrocarnil Sonora-Baja California [FFRR--FSBC]. The FFRR Via Corta Tijuana-Tecate operates in the Tijuana-Tecate corridor [Corridor G]. The FFRR-FSBC operates in the Mexicali-Eljido Puebla corridor [Corridor E].The rail lines of the FFRR-FSBC cross the US-Mexico border at the Mexicali POE. In 2000 there were 335,000 tons of goods transported south across the US-Mexico border into Baja at the Mexicali POE by the FFRR-FSBC railroad. The rail lines of the FFRR Via Corta Tijuana-Tecate cross the US-Mexico border at Puerta Mexico. In 2000 there were about 2,400 rail cars that crossed the US-Mexico border at Puerta Mexico POE heading south into Baja.

Maritime Ports

Baja has one maritime port located within 100 km of the U.S.-Mexico border and designated as an international port of entry. That port is the Port of Ensenada and its main channel depth is 13 meters. Ships arriving and departing at the Port of Ensenada transported about 640,000 tons of goods in 2000.

Source: Baja California BINSTechnical Committee representative.

ANALYSIS OF CORRIDOR EVALUATION RESULTS

Of the 12 corridors evaluated in Baja California, the Bellas Artes corridor is listed first - this is one of the corridors that is a local road. Listed \#2 is the Mexicali-Ejido Puebla corridor, \#3 is Mexicali Progreso, \#4 is Mexicali-San Felipe, \#5 is Tijuana-Rosarito [free], \#6 is Tecate-Ensenada, \#7 is Tecate Tijuana [free], \#8 is Tecate-Tijuana [toll], \#9 is Bataques-Algodones, \#10 is El Hongo-Tecate [free], \#11 is Tijuana-Rosarito [toll], and listed \#12 or last is the Central Camionera Garita corridor [a local road].

The Bellas Artes corridor obtains its first place listing by being listed first with respect to the historical data and being listed first with respect to the change data.

Historical Data

This discussion reviews highway, land POE, airport, maritime port and rail data and results. With regard to the highways, the Central Camionera Garita Puerta Mexico is listed first in three of the four highway categories - AADT, LOS and capacity. This corridor dominates the AADT listing with 40,000 - this is twice as large as the corridor listed second [Bellas Artes] and 20 times larger than the corridor listed twelfth [Bataques-Algodones]. Highway length is the only indicator for which the Central Camionera Garita is not listed first - and the Tecate-Ensenada corridor is listed first with 104.5 km.

For truck, airport and maritime port data, the Bellas Artes corridor is always listed first by virtue of the fact that those data are allocated by the distribution of AADT amongst 11 corridors and Bellas Artes has the largest total of the 11 corridors. Trucks do not transit the Central Camionera Garita corridor; therefore, no truck, airport or maritime port data are allocated to it. For passenger vehicles, the Central Camionera Garita corridor is listed first since is has the largest portion of AADT among the 12 corridors and the Bellas Artes corridor is listed second. For railroad cars, the Tecate Tijuana corridor [G] is listed first since the FFRR Via Corta Tijuana-Tecate rail line is assigned to this corridor. For railroad volume, the Mexicali-Ejido Puebla corridor [E] is listed first since the FFRR-FSBC rail line is assigned to this corridor. Had data for both rail cars and tonnage been provided for both POE, it would impact the corridor scores - but not the final ranking.

Change Data

This discussion reviews highway, land POE, airport, maritime port and rail data for both absolute changes and percent changes. With regard to absolute changes, the Central Camionera Garita dominates the highways mode with the Bellas Artes listed second. With regard to highways, the Central Camionera Garita is listed first for three indicators [AADT, LOS and capacity] and tied for first for highway length.

For truck, airport, and maritime port data, the Bellas Artes corridor is always listed first by virtue of the fact that it supports the highest trade and vehicle volumes for the year 2000, and the growth rates for 11 corridors are the same [the Central Camionera Garita corridor is excluded]. For passenger vehicles, Central Camionera Garita corridor is listed first. For railroad cars, the TecateTijuana corridor [G] is listed first since the FFRR Via Corta Tijuana-Tecate rail line is assigned to this corridor. For railroad volume, the Mexicali-Ejido Puebla corridor [E] is listed first since the FFRR-FSBC
rail line is assigned to this corridor. Had data for both rail cars and tonnage been provided for both POE, it would impact the corridor scores - but not the final listing.

With regard percent changes in highway data, all 12 corridors are tied for first by virtue of the fact that each uses the same annual compound growth rate - 3.0\% per year for AADT, LOS and Capacity and no change for highway length.

For trucks, airports and maritime ports, 11 of the corridors are tied for first by virtue of the fact that they use the same growth rates [the Central Camionera Garita corridor is excluded]. For passenger vehicles the 12 corridors are tied. For railroad cars, the Tecate-Tijuana corridor [G] is listed first since the FFRR Via Corta Tijuana-Tecate rail line is assigned to this corridor. For railroad volume, the Mexicali-Ejido Puebla corridor [E] is listed first since the FFRR-FSBC rail line is assigned to this corridor. Had data for both rail cars and tonnage been provided for both POE, it would impact the corridor scores - but not the final listing.

Table 1
Summary Corridor Results

Corridor Identification	A	B	C	D	E	F	G	H	1	J	K	L
	Tijuana- Rosarito [toll]	TijuanaRosarito [free]	Tecate- Tijuana [toll]	Hongo Tecate [free]	Mexicali - Ejido Puebla	MexicaliProgreso	Tecate- Tijuana [free]	TecateEnsenada	$\begin{array}{\|c} \hline \text { Mexicali } \\ \text {-San } \\ \text { Felipe } \\ \hline \end{array}$	BataquesAlgodones	$\begin{gathered} \text { Central } \\ \text { Camionera } \end{gathered}$ Garita	Bellas Artes
Historical Scores for 2000 Data 1												
Highways	52	44	54	54	42	52	54	36	42	64	28	40
Land Ports of Entry	36	26	28	34	24	20	26	30	24	28	26	6
Airports	22	20	16	16	14	12	10	8	6	4	24	2
Maritime Ports	44	40	32	32	28	24	20	16	12	8	48	4
Railroads	8	8	8	8	6	8	6	8	8	8	8	8
Sum of Historical Scores:	162	138	138	144	114	116	116	98	92	112	134	60
Changes Scores For Changes Betw een 2000 and 2020 ${ }^{2}$												
Highways	25	20	24	27	16	19	28	22	24	34	8	16
Land Ports of Entry	15	7	13	19	11	9	17	23	19	25	26	5
Airports	7	3	6	9	5	4	8	11	9	12	24	2
Maritime Ports	14	6	12	18	10	8	16	22	18	24	48	4
Railroads	8	8	8	8	6	8	6	8	8	8	8	8
Sum of Change Scores:	69	44	63	81	48	48	75	86	78	103	114	35
Overall Scores ${ }^{3}$:	231	182	201	225	162	164	191	184	170	215	248	95
Overall Result:	11	5	8	10	2	3	7	6	4	9	12	1

Notes:

$1 \quad$ Historical Scores from Table 2a. To insure equal weighting with the Changes scores, the Historical corridor scores are multiplied by two The Changes Scores is the sum of the Evaluation Results from Table 4a [Corridor Changes] and Table 4a [Corridor Percent Changes]. The Overall Score is the sum of theHistorical Score and the Changes Score. The Historical Data scores and the Changes Between 2000 and 2020 scores are equally weighted

Lower score represents greater need.

Table 2
Corridor Data For 2000

Corridor Identification:	A	B	C	D	E	F	G	H	1	J	K	L
Corridor Name	Tijuana Rosarito [toll]	Tijuana Rosarito [free]	Tecate Tijuana [toll]	Hongo Tecate [free]	Mexicali Ejido Puebla	Mexicali Progreso	TecateTijuana [free]	TecateEnsenada	$\begin{aligned} & \hline \text { Mexicali } \\ & \text { - San } \\ & \text { Felipe } \end{aligned}$	Bataques Algodones	Central Camionera Garita	Bellas Artes
Highways												
Average Annual Daily Traffic	5,100	10,600	5,700	4,600	6,500	7,000	5,000	4,200	4,600	2,100	40,000	20,000
Highway Length [in km]	35.4	25.9	22.7	45.0	12.0	7.8	50.6	104.5	100.0	51.7	7.9	16.3
LOS[A=1 to F3 =9]	1.0	4.0	1.0	3.0	3.0	2.0	3.0	3.0	2.0	2.0	4.0	4.0
Capacity at Peak Hour	3,200	1,600	3,200	2,000	3,200	3,200	1,600	3,200	3,200	2,000	5,500	2,500
Land Port of Entry Border Crossings												
Number trucks	62,511	129,925	69,865	56,382	79,671	85,799	61,285	51,480	56,382	25,740	0	245,141
Total volume [tons]												
\#passenger veh. \& buses	986,815	2,051,027	1,102,910	890,068	1,257,705	1,354,451	967,465	812,671	890,068	406,335	7,739,723	3,869,861
Airports												
Total volume [tons]	5,129	10,661	5,733	4,626	6,537	7,040	5,029	4,224	4,626	2,112	0	20,115
M aritime Ports												
Total volume [tons]	43,271	89,935	48,361	39,028	55,149	59,391	42,422	35,635	39,028	17,817	0	169,689
Total number TEUs	1,952	4,057	2,182	1,761	2,488	2,679	1,914	1,608	1,761	804	0	7,655
Railroads Border Crossing at POE												
Number rail cars							2,419					
Total volume [tons]					335,000							
Total AADT in Corridors ${ }^{1}$	Share of AADT Among Corridors											
75,400	6.8\%	14.1\%	7.6\%	6.1\%	8.6\%	9.3\%	6.6\%	5.6\%	6.1\%	2.8\%		26.5\%
115,400	4.4\%	9.2\%	4.9\%	4.0\%	5.6\%	6.1\%	4.3\%	3.6\%	4.0\%	1.8\%	34.7\%	17.3\%

Notes:
${ }_{1}$ There are 75,400 AADT in 11 corridors [excludes Central Camionera Garita]. This is used to distribute data for trucks, airports and maritime ports. There are 115,400 AADT in all twelve corridors used to distribute passenger vehicles and buses.
POE, Airport \& Maritime port data are assigned to Corridors based on AADT distribution

Source:
Baja California BINSTechnical Committee Representative, see Tables 6-9 for details.

Table 2a
Corridor Evaluation Results For 2000

Corridor Identification:	A	B	C	D	E	F	G	H	1	J	K	L
Corridor Name	Tijuana Rosarito [toll]	$\begin{array}{\|c} \hline \text { Tijuana } \\ \text { Rosarito } \\ \text { [free] } \end{array}$	$\begin{array}{\|c\|} \hline \text { Tecate } \\ \text { Tijuana } \\ \text { [toll] } \end{array}$	$\begin{array}{\|l\|} \hline \text { Hongo } \\ \text { Tecate } \\ \text { [free] } \end{array}$	Mexicali - Ejido Puebla	$\begin{array}{\|l\|} \hline \text { Mexicali } \\ \text { Progreso } \end{array}$	$\begin{array}{\|l\|} \hline \text { Tecate } \\ \text { Tijuana } \\ \text { [free]] } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { Tecate - } \\ \text { Ensenada } \end{array}$	$\begin{array}{\|c\|c\|} \hline \text { Mexicali } \\ \text { - San } \\ \text { Felipe } \\ \hline \end{array}$	Bataques Algodones	$\begin{gathered} \text { Central } \\ \text { Camionera } \\ \text { Garita } \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { Bellas } \\ & \text { Artes } \end{aligned}$
Highways												
Average Annual Daily Traffic	7	3	6	9	5	4	8	11	9	12	1	2
Highway Length [in km]	6	7	8	5	10	12	4	1	2	3	11	9
LOS[A=1 to F3 =9]	11	1	11	4	4	8	4	4	8	8	1	1
Capacity at Peak Hour	2	11	2	9	2	2	11	2	2	9	1	8
Highway Scores:	26	22	27	27	21	26	27	18	21	32	14	20
Overall Highway Result:	7	6	9	9	4	7	9	2	4	12	1	3
Land Port of Entry Border Crossings												
Number trucks	11	10	8	8	7	6	5	4	3	2	12	1
Total volume [tons]												
\#passenger veh. \& buses	7	3	6	9	5	4	8	11	9	12	1	2
Land POE Scores:	18	13	14	17	12	10	13	15	12	14	13	3
Overall POE Result:	12	5	8	11	3	2	5	10	3	8	5	1
Airports												
Total volume [tons]	11	10	8	8	7	6	5	4	3	2	12	1
Airport Scores:	11	10	8	8	7	6	5	4	3	2	12	1
Overall Airport Result:	11	10	8	8	7	6	5	4	3	2	12	1
Maritime Ports												
Total volume [tons]	11	10	8	8	7	6	5	4	3	2	12	1
Total number TEUs	11	10	8	8	7	6	5	4	3	2	12	1
M aritime Port Score:	22	20	16	16	14	12	10	8	6	4	24	2
Overall Maritime Result:	11	10	8	8	7	6	5	4	3	2	12	1
Railroads Border Crossing at POE												
Number rail cars	2	2	2	2	2	2	1	2	2	2	2	2
Total volume [tons]	2	2	2	2	1	2	2	2	2	2	2	2
Railroad Scores:	4	4	4	4	3	4	3	4	4	4	4	4
Overall Railroad Result:	3	3	3	3	1	3	1	3	3	3	3	3

Notes: Lower score represents greater need

Table 3
Corridor Data For 2020

Corridor Identification:	A	B	C	D	E	F	G	H	I	J	K	L
Corridor Name	Tijuana Rosarito [toll]	Tijuana - Rosarito [free]	Tecate Tijuana [toll]	Hongo Tecate [free]	$\begin{gathered} \hline \text { Mexicali - } \\ \text { Ejido } \\ \text { Puebla } \end{gathered}$	$\begin{aligned} & \text { Mexicali - } \\ & \text { Progreso } \\ & \hline \end{aligned}$	Tecate - Tijuana [free]	Tecate Ensenada	Mexicali San Felipe	Bataques Algodones	Central Camionera Garita	Bellas Artes
Highways												
Average Annual Daily Traffic	9,211	19,145	10,295	8,308	11,740	12,643	9,031	7,586	8,308	3,793	72,244	36,122
Highway Length [in km]	35.4	25.9	22.7	45.0	12.0	7.8	50.6	104.5	100.0	51.7	7.9	16.3
LOS [A=1 to F3 = 9]	1.8	7.2	1.8	5.4	5.4	3.6	5.4	5.4	3.6	3.6	7.2	7.2
Capacity at Peak Hour	5,780	2,890	5,780	3,612	5,780	5,780	2,890	5,780	5,780	3,612	9,934	4,515
Land Port of Entry Border Crossings												
Number trucks	135,663	281,966	151,623	122,363	172,904	186,204	133,003	111,722	122,363	55,861	0	532,012
Total volume [tons]												
\#passenger veh. \& buses	1,782,286	3,704,359	1,991,967	1,607,552	2,271,541	2,446,275	1,747,339	1,467,765	1,607,552	733,882	13,978,713	6,989,357
Airports												
Total volume [tons]	7,036	14,624	7,864	6,346	8,968	9,657	6,898	5,794	6,346	2,897	0	27,592
Maritime Ports												
Total volume [tons]	269,089	559,282	300,746	242,707	342,956	369,337	263,812	221,602	242,707	110,801	0	1,055,249
Total number TEUs	10,187	21,173	11,385	9,188	12,983	13,982	9,987	8,389	9,188	4,195	0	39,949
Railroads Border Crossing at POE												
Number rail cars							4,369					
Total volume [tons]					1,744,380							
Total AADT in Corridors ${ }^{1}$	Share of AADT Among Corridors											
136,180	6.8\%	14.1\%	7.6\%	6.1\%	8.6\%	9.3\%	6.6\%	5.6\%	6.1\%	2.8\%		26.5\%
208,424	4.4\%	9.2\%	4.9\%	4.0\%	5.6\%	6.1\%	4.3\%	3.6\%	4.0\%	1.8\%	34.7\%	17.3\%
Notes: 1 There are 136,180 AADT in 11 corridors [excludes Central Camionera Garita]. This is used to distribute data for trucks, airports and maritime ports. There are 208,424 AADT in all twelve corridors used to distribute passenger vehides and buses												

Table 3a
Corridor Evaluation Results For 2020

Table 4
Corridor Changes 2000-2020

Corridor Identification:	A	B	C	D	E	F	G	H	1	J	K	L
Corridor Name	Tijuana Rosarito [toll]	Tijuana Rosarito [free]	Tecate Tijuana [toll]	Hongo Tecate [free]	Mexicali Ejido Puebla	Mexicali Progreso	Tecate Tijuana [free]	Tecate Ensenada	$\begin{gathered} \hline \text { Mexicali } \\ \text { - San } \\ \text { Felipe } \\ \hline \end{gathered}$	Bataques Algodones	\qquad	Bellas Artes
Highways												
Average Annual Daily Traffic	4,111	8,545	4,595	3,708	5,240	5,643	4,031	3,386	3,708	1,693	32,244	16,122
Highway Length [in km]	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
LOS [A=1 to F3 =9]	0.81	3.22	0.81	2.42	2.42	1.61	2.42	2.42	1.61	1.61	3.22	3.22
Capacity at Peak Hour	2,580	1,290	2,580	1,612	2,580	2,580	1,290	2,580	2,580	1,612	4,434	2,015
Land Port of Entry Border Crossings												
Number trucks	73,152	152,042	81,758	65,980	93,233	100,405	71,718	60,243	65,980	30,121	0	286,871
Total volume [tons]												
\# passenger veh. \& buses	795,471	1,653,332	889,056	717,484	1,013,836	1,091,823	779,874	655,094	717,484	327,547	6,238,990	3,119,495
Airports												
Total volume [tons]	1,907	3,963	2,131	1,720	2,430	2,617	1,869	1,570	1,720	785	0	7,477
Maritime Ports												
Total volume [tons]	225,818	469,347	252,385	203,679	287,807	309,946	221,390	185,968	203,679	92,984	0	885,560
Total number TEUs	8,235	17,116	9,204	7,428	10,496	11,303	8,073	6,782	7,428	3,391	0	32,294
Railroads Border Crossing at POE												
Number rail cars							1,950					
Total volume [tons]					1,409,380							
Total AADT in Corridors ${ }^{1}$	Share of AADT Among Corridors											
60,780	6.8\%	14.1\%	7.6\%	6.1\%	8.6\%	9.3\%	6.6\%	5.6\%	6.1\%	2.8\%		26.5\%
93,024	4.4\%	9.2\%	4.9\%	4.0\%	5.6\%	6.1\%	4.3\%	3.6\%	4.0\%	1.8\%	34.7\%	17.3\%

Notes:
There are 60,780 AADT in 11 corridors [excludes Central Camionera Garita]. This is used to distribute data for trucks, airports and maritime ports. There are 93,024
AADT in all twelve corridors used to distribute passenger vehicles and buses. Differences are estimated by subtracting the year 2000 data from the 2020 projections. See Tables 6-9 for details.
POE, Airport \& Maritime port data are assigned to Corridors based on AADT distribution.

Table 4a
Corridor Evaluation Results for Changes 2000-2020

Table 5
Corridor Percent Changes 2000-2020

Corridor Identification:	A	B	C	D	E	F	G	H	1	J	K	L
Corridor Name	$\begin{gathered} \begin{array}{c} \text { Tijuana- } \\ \text { Rosarito } \\ \text { [tolli] } \end{array} \\ \hline \end{gathered}$	Tijuana - Rosarito [free]	Tecate - Tijuana [toll]	$\begin{gathered} \hline \text { Hongo - } \\ \text { Tecate } \\ \text { [free] } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Mexicali } \\ \text { - Ejido } \\ \text { Puebla } \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { Mexicali- } \\ & \text { Progreso } \end{aligned}$	Tecate - Tijuana [free]	Tecate Ensenada	$\begin{gathered} \hline \text { Mexicali } \\ \text { S Sain } \\ \text { Felipe } \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { Bataques - } \\ & \text { Algodones } \end{aligned}$	$\begin{gathered} \text { Central } \\ \text { Camionera } \\ \text { Garita } \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { Bellas } \\ & \text { Artes } \end{aligned}$
Highways												
Average Annual Daily Traffic	80.6\%	80.6\%	80.6\%	80.6\%	80.6\%	80.6\%	80.6\%	80.6\%	80.6\%	80.6\%	80.6\%	80.6\%
Highway Length [in km]	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
LOS[A $=1$ to $\mathrm{F3}=9$]	80.6\%	80.6\%	80.6\%	80.6\%	80.6\%	80.6\%	80.6\%	80.6\%	80.6\%	80.6\%	80.6\%	80.6\%
Capacity at Peak Hour	80.6\%	80.6\%	80.6\%	80.6\%	80.6\%	80.6\%	80.6\%	80.6\%	80.6\%	80.6\%	80.6\%	80.6\%
Land Port of Entry Border Crossings												
Number trucks	117.0\%	117.0\%	117.0\%	117.0\%	117.0\%	117.0\%	117.0\%	117.0\%	117.0\%	117.0\%		117.0\%
Total volume [tons]												
\# passenger veh. \& buses	80.6\%	80.6\%	80.6\%	80.6\%	80.6\%	80.6\%	80.6\%	80.6\%	80.6\%	80.6\%	80.6\%	80.6\%
Airports												
Total volume [tons]	37.2\%	37.2\%	37.2\%	37.2\%	37.2\%	37.2\%	37.2\%	37.2\%	37.2\%	37.2\%		37.2\%
Maritime Ports												
Total volume [tons]	521.9\%	521.9\%	521.9\%	521.9\%	521.9\%	521.9\%	521.9\%	521.9\%	521.9\%	521.9\%		521.9\%
Total number TEUs	521.9\%	521.9\%	521.9\%	521.9\%	521.9\%	521.9\%	521.9\%	521.9\%	521.9\%	521.9\%		521.9\%
Railroads Border Crossing at POE												
Number rail cars							80.6\%					
Total volume [tons]					420.7\%							

Table 5a
Corridor Evaluation Results for Percent Changes 2000-2020

Table 6
Highway Data

Corridor ID	Highway	Corridor Name	Kilometers			Avg. Annual Daily Traffic	$\begin{gathered} \text { Level of Service - } \\ \text { LOS } \end{gathered}$		TrafficCarrying Capacity
			Begin Post	End Post	Highway Length		A to F3	$\begin{gathered} 1 \text { to } \\ 9 \end{gathered}$	
Historical Data for Calendar Year 2000									
A	MX-1D	Tijuana - Rosarito [cuota]	0.00	35.42	35.42	5,100	A	1	3,200
B	MX-1	Tijuana - Rosarito [libre]	0.00	25.94	25.94	10,600	D	4	1,600
C	MX-2D	Tecate-Tijuana [cuota]	0.00	22.74	22.74	5,700	A	1	3,200
D	MX-2	Hongo - Tecate [libre]	87.00	132.00	45.00	4,600	C	3	2,000
E	MX-2	Mexicali - Ejido Puebla	0.00	12.00	12.00	6,500	C	3	3,200
F	MX-2	Mexicali - Progreso	0.00	7.80	7.80	7,000	B	2	3,200
G	MX-2	Tecate-Tijuana [libre]	132.00	182.60	50.60	5,000	C	3	1,600
H	MX-3	Tecate - Ensenada [El Sauzal]	0.00	104.53	104.53	4,200	C	3	3,200
1	MX-5	Mexicali - San Felipe	0.00	100.00	100.00	4,600	B	2	3,200
J	BCN-2	Bataques- Algodones	49.65	101.30	51.65	2,100	B	2	2,000
K	via Rapida Oriente	Central Camionera - Garita Puerta Mexico	0.00	7.90	7.90	40,000	D	4	5,500
L	Bellas Artes Blvd	Bellas Artes	0.00	16.25	16.25	20,000	D	4	2,500
Projections for 2020									
A	MX-1D	Tijuana - Rosarito [cuota]	0.00	35.42	35.42	9,211	A	1.81	5,780
B	MX-1	Tijuana - Rosarito [libre]	0.00	25.94	25.94	19,145	F1	7.22	2,890
C	MX-2D	Tecate-Tijuana [cuota]	0.00	22.74	22.74	10,295	A	1.81	5,780
D	MX-2	Hongo - Tecate [libre]	87.00	132.00	45.00	8,308	E	5.42	3,612
E	MX-2	Mexicali - Ejido Puebla	0.00	12.00	12.00	11,740	E	5.42	5,780
F	MX-2	Mexicali - Progreso	0.00	7.80	7.80	12,643	C	3.61	5,780
G	MX-2	Tecate-Tijuana [libre]	132.00	182.60	50.60	9,031	E	5.42	2,890
H	MX-3	Tecate - Ensenada [El Sauzal]	0.00	104.53	104.53	7,586	E	5.42	5,780
1	MX-5	Mexicali - San Felipe	0.00	100.00	100.00	8,308	C	3.61	5,780
J	BCN-2	Bataques-Algodones	49.65	101.30	51.65	3,793	C	3.61	3,612
K	via Rapida Oriente	Central Camionera - Garita Puerta Mexico	0.00	7.90	7.90	72,244	F1	7.22	9,934
L	Bellas Artes Blvd	BellasArtes	0.00	16.25	16.25	36,122	F1	7.22	4,515

Percent Change: 2000 to 2020

It is assumed that highway length does not change during the 20 year period. All other indicators increase at a compound annual rate of 3.0%. Thistranslates to overall growth of 80.6\%

LOS coding: $\mathrm{A}=1, \mathrm{~B}=2, \mathrm{C}=3, \mathrm{D}=4, \mathrm{E}=5, \mathrm{FO}=6, \mathrm{~F} 1=7, \mathrm{~F} 2=8, F 3=9$

Sources:
Historical data from the Baja California BINSTechnical Committee Representative

Table 7
Land Ports Of Entry [POE] Crossing Data

	Algondones	Mexicali	MexicaliEste	Puerta Mexico	Mesa de Otay	Tecate	Total
Federal inspection facilities at POE?	Yes	Yes	Yes	Yes	Yes	Yes	
Southbound POE Crossing Data for $2000{ }^{1}$							
Number trucks					819,060	105,120	924,180
Tons of goods							0
Value [Millions \$] moved by truck							\$0.0
Number of passenger vehicles				20,380,000		1,949,100	22,329,100
Number of buses							0
Number passenger vehicles \& buses				20,380,000		1,949,100	22,329,100
Number of rail cars				2,419			X
Volume of tons moved by rail		335,000					X
Number of TEUs moved by rail							X
Value [Millions \$] moved by rail							X
Southbound POE Crossing Data for 2020							
Number trucks ${ }^{2}$					1,777,550	228,135	2,005,685
Tons of goods							
Value [Millions \$] moved by truck							
Number of passenger vehicles							X
Number of buses							X
Number passenger vehicles \& buses ${ }^{3}$							40,328,588
Number of rail cars ${ }^{3}$				4,369			X
Volume of tons moved by rail ${ }^{1}$		1,744,380					X
Number of TEUs moved by rail							X
Value [Millions \$] moved by rail							X
Per Cent Change in POE Data: 2000 to 2020							
Number trucks ${ }^{2}$							117.0\%
Tons of goods							
Value [Millions \$] moved by truck							
Number of passenger vehicles							X
Number of buses							X

	Algondones	Mexicali	MexicaliEste	Puerta Mexico	Mesa de Otay	Tecate	Total
Number passenger vehicles \& buses ${ }^{4}$							80.6\%
Number of rail cars ${ }^{4}$				80.6\%			X
Volume of tons moved by rail ${ }^{5}$		420.7\%					X
Number of TEUs moved by rail							X
Value [Millions\$] moved by rail							X

Notes
Number of trucks = southbound trucks that cross the US-Mexico border
Tons of goods = carried by southbound trucks that cross the US-M exico border.
Value [Millions $\$$] moved by truck = value of goods moved by southbound trucks that cross the US-Mexico border.
Number of passenger vehicles = southbound passenger vehicles that cross the US-M exico border.
Number of buses = southbound buses that cross the US-Mexico border.
Number passenger vehicles \& buses = sum of southbound passenger vehicles and buses that cross the USM exico border.
Number of rail cars = southbound rail cars that cross the US-Mexico border.
Volume of tons moved by rail =transported by the southbound rail cars that cross the US-M exico border.
Number of TEUs moved by rail =Twenty foot Equivalent containers [TEUs] moved by rail that are southbound and cross the US-Mexico border.
Value [Millions $\$$] moved by rail = value of goods transported by southbound rail cars that cross the US-M exico border.
Cells are X out when no totals are intended. Rail data, for example, are assigned to corridors by the BINS State Technical Committee representative This makes railroads different from airports, maritime ports, passenger vehicles \& buses, and trucks that are summed and distributed to the corridors using the distribution of AADT.

Sources:

1 From Baja California BINS Technical Committee representative.
2 The BINSTechnical Committee representative provided the 2020 projectionsfor the Mesa de Otay POE. The growth rate from that forecast is estimated at 117.0% and is used to project the 2020 truck crossings at Tecate
$3 \quad$ Computed by multiplying the 2000 data by the 80.6% growth rate and adding the result to the 2000 data.
4 This 80.6% growth rate is based on a compound annual growth rate of 3.0% - the level specified by the Mexican Secretariat of Communications and Transportation
5
Estimated by subtracting the 2000 rail tonnage from the 2020 projections, and dividing the result by the 2000 rail tonnage.

Table 8
Airport Data

	San Felipe	Mexicali	Tijuana	Total
Within 100 km of the US-M exico Border?	No	Yes	Yes	
Designated as an International POE?	Yes	Yes	Yes	
Historical Data for 2000				
Longest runway length [in meters].		2,600	2,600	2,600
Tons of goods exported \& imported		7,565	68,268	75,833
Airport served by railroad facility?		No	No	X
If yes, name of railroad				X
On-land movement of air freight	X	X	X	X
Share of goods moved by truck				X
Share of goods moved by railroad				X
Projections for 2020				
Longest runway length				
Date becomes operational				X
Tons of goods exported \& imported		9,609	94,414	104,023
Airport served by railroad facility?				X
If yes, name of railroad				X
On-land movement of air freight	X	X	X	X
Share of goods moved by truck				
Share of goods moved by railroad				
Per Cent Change: 2000 to 2020				
Longest runway length				
Tons of goods exported \& imported				37.2\%
Note: Only data for facilities that meet minimum criteria are included Source: Baja California BINSTechnical Committee representative				

Table 9
Maritime Port Data

Within 100 km of the US-Mexico Border?	Yes			
Designated as an International POE?	Yes			
	2000	2020	Changes 2000 to 2020	
			Absolute	Percent
Main Channel Depth [in meters]	13			
Total tons of goods exported \& imported	639,727	3,978,289	3,338,562	521.9\%
Total number TEUs exported \& imported	28,859	150,607	121,748	521.9\%
Maritime ports served by railroad facility?	N	Y		
If yes, name of railroad				
On-land movement of air freight	X	X	X	X
Share of goods moved by truck	100\%			
Share of goods moved by railroad				
Note: Only data for the port of Ensenada are included in the evaluation as Ensenada meets both minimum criteria. There are maritime ports at Rosarito and Sauzal that are not included because they are not designated as international ports of entry.				
Baja California BINSTechnical Committee representative. Tons projections provided by the Baja California BINSTechnical Committee representative. For TEU, the tonnage growth rate [521.9\%] is used to obtain the TEU projections.				

Map 1
Baja California Border Area

CORRIDOR EVALUATION CALIFORNIA RESULTS AND DATA

Corridor evaluations are conducted to determine the corridors with the greater needs. This corridor evaluation uses quantifiable data with a systematic method to evaluate transportation corridors. Corridors are combinations of modes that move people, vehicles and goods from one location to another. To facilitate the evaluation process, the computations are calculated in formulas contained in the spreadsheets that will be sent to each of the states. Each evaluation spreadsheet is tailored to each state, thus each state's evaluation spreadsheet contains unique data - even though the methodology is the same. It is envisioned that each state will use its spreadsheet to conduct corridor evaluations, at its discretion.

Overall, the evaluation is conducted by compiling data, allocating the data to corridors and comparing corridors [within a state] to one another. There are 16 indicators 1 for which we compile data for each corridor. The overall evaluation uses two broad categories of data:

1. Historical Data - data for 16 indicators for the year 2000.
2. Change Data - a combination of actual changes for the 16 indicators from 2000 to 2020 and percent changes for the same 16 indicators from 2000 to 2020.

Conducting the evaluations is based on the ordering of data from highest to lowest to determine need. For example, assume there are three corridors in a state and the Average Annual Daily Traffic [AADT] in Corridor A is 157,000, the AADT for Corridor B is 450,000 and the AADT for Corridor C is 30,000. In this example, Corridor B is listed first because it has the highest AADT [450,000], its evaluation results are one, and it has the highest need. Corridor A is listed second because its AADT is 157,000 [second highest], its evaluation results are two, and it has the second highest need. Corridor C is listed third because it has the lowest AADT [30,000], its evaluation results are three and it has the lowest need. This process is repeated for all 16 indicators with data for calendar year 2000, for all 16 indicators for the change in the data between 2000 and 2020, and all 16 indicators for the percent change in the data between 2000 and 2020. There are a total of 48 evaluations compiled if all the data are present.

Higher values for the indicators represent more traffic (AADT), more congestion (LOS), more trade (dollar value of air, maritime, rail and truck cargo across POEs), more vehicles (number of passenger vehicles, trucks, buses, and rail cars across a POE), which point to both the relative importance of the corridor and its infrastructure needs. The highest value is given "first place" or a score of one and represents the highest need.

[^15]The evaluation results are summed by mode. For example, there are four indicators for highways AADT, the highway length [in miles], the level of service [LOS] and the highway capacity at peak hours. If a corridor was listed first for each indicator, its highway score would be a four [a score of one for each indicator]. This is done for Land Ports of Entry [POE - five indicators], airports [one indicator], maritime ports [two indicators] and railroads [four indicators]. The lower the score, the higher the listing. It follows that the lowest mode score represents the corridor with the greatest need for that mode.

The overall score for each corridor is then calculated by summing the five modes scores [one each for highways, POE, airports, maritime ports and railroads]. The corridor with the lowest overall score is listed first and has the highest overall need. The corridor with the second lowest overall score is listed second and has the second highest need. The corridor with the highest overall score is listed third and has the lowest overall need.

Recall there is one historical component and there are two change components (change in absolute terms and percent change). Without any adjustments, the change component has twice the impact on the final result as the historical data. It was decided that the historical values are as important as the projected changes. To accomplish equal weighting, the historical scores are multiplied by two.

GENERAL DESCRIPTION OF CALIFORNIA'S CORRIDORS

Corridors

California has identified two corridors for the study and they are called the San Diego-TijuanaTecate corridor, and the Imperial-Mexicali corridor. Both corridors run North-South.

Highways

The San Diego-Tijuana-Tecate corridor is composed of nine highways: Interstate 5 [I-5], I-8, I-15, I805, SR 11, SR 94, SR 125, SR 188 and SR 905. The Imperial-Mexicali corridor is composed of eight highways: Interstate 8 [I-8], I-10, SR 78, SR 86, SR 98, SR 111, SR 115 and SR 186.

Land Ports of Entry [POE]

There are six land POEs in California: San Ysidro, Otay Mesa, Tecate, Calexico, Calexico East and Andrade. In calendar year 2000, about 1 million trucks carrying about 3.6 million tons of goods were transported into California through four land POEs. Also in calendar year 2000, about 30 million passenger vehicles crossed the border into California through the six land POEs.

Airports

There are six airports located within 100 km of the US-M exico border, but only Lindbergh Field is included in this evaluation because it is the only airport designated as an international port of entry. The longest runway at Lindbergh Field is 9,400 feet in length. During calendar year 2000, airplanes arriving and departing at Lindbergh field transported about 102,600 tons of goods.

Railroads

There are three railroads that operate within 100 km of the US-M exico border and they are the Burlington Northern Santa Fe [BNSF], the San Diego and Imperial Valley [SDIV], and the Union Pacific [UP]. The BNSF and SDIV both operate in the San Diego-Tijuana-Tecate corridor. The UP operates in the Imperial-Mexicali corridor. The rail lines of the SDIV cross the US-Mexico border at the San Ysidro POE. In 2000 there were 202 rail cars that crossed the border into the United States at the San Ysidro POE transporting about 9,700 tons of goods. The rail lines of the UP cross the USMexico border at the Calexico POE. In 2000 there were 246 rail cars that crossed the border into the United States at Calexico transporting about 78,600 tons of goods.

Maritime Ports

California has one maritime port located within 100 km of the US-M exico border and designated as an international port of entry. That port is the Port of San Diego with a main channel depth of 42 feet. Ships arriving and departing at the Port of San Diego transported about 2 million tons of goods in 2000.

Source: California BINSTechnical Committee representative.

ANALYSIS OF CORRIDOR EVALUATION RESULTS

Of the two corridors evaluated in California, the San Diego-Tijuana-Tecate corridor [or the San Diego corridor] is listed first overall with the Imperial-Mexicali corridor [Imperial corridor] listed second. The San Diego corridor obtains its first place listing by being listed first with respect to the historical data, and being listed first with respect to the change data.

Historical Data

This discussion reviews highway, land POE, airport, maritime port and rail data and results. With regard to the highways, the San Diego corridor is listed first. This comes about because the San Diego corridor is listed first in three categories [AADT, LOS and capacity] and the Imperial corridor is listed first in one category [highway length]. The San Diego corridor had almost eight [8] times as much AADT as the Imperial corridor [719,972 to 92,755], 77% more highway capacity [42,177 versus 23,871] and its LOS is significantly lower [C versus A]. By contrast, the Imperial corridor has 29% more mileage than the San Diego corridor [377.8 miles versus 292.4 miles].

For truck data, passenger vehicles, airports, and maritime ports, the San Diego corridor is always listed first by virtue of the fact that those data are distributed by the distribution of AADT amongst the corridors. For railroad data, the Imperial corridor is always listed first because the number of rail cars and the amount of goods transported in the Imperial corridor by Union Pacific is larger than the number of rail cars and goods transported by the San Diego Imperial Valley railroad in the San Diego corridor.

Change Data

This discussion reviews highway, land POE, airport, maritime port and rail data for both absolute changes and percent changes. With regard absolute changes in highway data, the San Diego corridor is listed first in three of the four categories [AADT, highway length and capacity] implying the absolute changes were larger in the San Diego corridor. In the case of LOS, the LOS rating for the Imperial corridor declined more than the LOS rating for the San Diego corridor.

For trucks, passenger vehicles, airports, and maritime ports data, the San Diego corridor is always listed first by virtue of the fact that the growth rates for both corridors are the same, and the San Diego corridor had larger volumes in the year 2000. For railroad data, the Imperial corridor is always listed first for a similar reason. The growth rates are the same for both railroads, but the Union Pacific [in the Imperial corridor] had larger volumes in calendar year 2000 than the San Diego Imperial Valley railroad [San Di ego corridor] had in the year 2000.

With regard percent changes in highway data, the San Diego and Imperial corridor are tied for first by virtue of the fact that each is listed first in two categories. The San Diego corridor is listed first with regard to the larger percent increase in highway length [4.8\% versus 1.3\%] and capacity [42.0\% versus 8.2\%]. The Imperial corridor is listed first with regard to AADT [101\% growth versus 40%] and LOS [a decline of 40.5% versus a decline of 7.5%].

For trucks, passenger vehicles, airports, maritime ports, and railroad data, the San Diego and Imperial corridor are always tied for first by virtue of the fact that they used the same growth rates.

Table 1
Summary Corridor Results

	Corridor Scores ${ }^{1}$			Evaluation Results		
	A San Diego-TijuanaTecate	B ImperialMexicali	C	A	B	C
Historical Data for 2000 ${ }^{2}$						
Highways	10	14		1	2	
Land Ports of Entry	8	16		1	2	
Airports	2	4		1	2	
Maritime Ports	2	4		1	2	
Railroads	16	8		2	1	
Sum of Historical Scores:	38	46		1	2	
Changes Betw een 2000 and 2020^{3}						
Highways	11	13		1	2	
Land Ports of Entry	8	12		1	2	
Airports	2	3		1	2	
Maritime Ports	2	3		1	2	
Railroads	12	8		2	1	
Sum of Change Scores:	35	39		1	2	
Overall Scores ${ }^{4}$:	73	85				
Overall Result:	1	2				
Notes:						
The Corridor Scores are the Evaluation Results in Tables 2, 4 and 5. Historical Scores from Table 2. To insure equal weighting with the Changes scores, the Historical corridor scores are multiplied by two. The Changes Scores is the sum of the Evaluation Results from Table 4 [Corridor Changes] and Table 5 [Corridor Percent Changes]. The Overall Score is the sum of the Historical Score and the ChangesScore. The Historical Data scores and the Changes Between 2000 and 2020 scores are equally weighted.						

Table 2
Corridor Data and Results For 2000

	Corridor Raw Data			Evaluation Results		
	A San Diego-TijuanaTecate	B Imperial- Mexicali	C	A	B	C
Highways						
Average Annual Daily Traffic	719,972	92,755		1	2	
Highway Length [in miles]	292.40	377.80		2	1	
LOS[A $=1$ to F3 =9]	3.922	1.330		1	2	
Capacity at Peak Hour	42,177	23,871		1	2	
		Highway Scores		5	7	
		Overall Highway Result		1	2	
Land Port of Entry Border Crossing						
Number trucks	910,694	117,326		1	2	
Total volume [tons]	3,162,134	407,383		1	2	
Value of goods Millions \$	\$14,121	\$1,819		1	2	
\#passenger vehicles \& buses	26,566,907	3,422,661		1	2	
		POE Scores		4	8	
		Overall POE Result		1	2	
Airports						
Total volume [tons]	94,168	12,132		1	2	
		Airport Scores		1	2	
		Overall Airport Result		1	2	
Maritime Ports						
Total volume [tons]	1,803,950	232,406		1	2	
Total number TEUs						
		Maritime Port Score		1	2	
		Overall Maritime Result		1	2	
Railroads Border Crossing at POE						
Number rail cars	202	246		2	1	
Total volume [tons]	9,676	78,632		2	1	
Total Number TEUs	3,874	5,779		2	1	
Value of goods Millions\$	\$1.0	\$22.8		2	1	
		Railroad Scores		8	4	
		Overall Railroad Result		2	1	
Total AADT in Two Corridors	Share of AADT Among Corridors					
812,728	88.6\%	11.4\%	0.0\%			
Notes: POE, Airport \& Maritime port data are assigned to Corridors based on AADT distribution. Historical data from California BINS Technical Committee representative, see Tables 6-9 for details. Lower score represents greater need.						

Table 3
Corridor Data and Results For 2020

	Corridor Raw Data			EvaluationResults		
	A San Diego-TijuanaTecate	B ImperialMexicali	C	A	B	C
Highways						
Average Annual Daily Traffic	1,008,392	186,422		1	2	
Highway Length [in miles]	306.30	382.80		2	1	
LOS[A $=1$ to F3 =9]	4.216	1.868		1	2	
Capacity at Peak Hour	59,891	25,830		1	2	
		Highway Scores		5	7	
		Overall Highway Result		1	2	
Land Port of Entry Border Crossing						
Number trucks	1,478,428	273,318		1	2	
Total volume [tons]	5,133,434	949,023		1	2	
Value of goods Millions \$	\$41,543	\$7,680		1	2	
\#passenger vehicles \& buses	43,633,792	8,066,624		1	2	
		POE Scores		4	8	
		Overall POE Result		1	2	
Airports						
Total volume [tons]	299,779	55,421		1	2	
		Airport Scores		1	2	
		Overall Air	Result	1	2	
Maritime Ports						
Total volume [tons]	2,740,507	506,640		1	2	
Total number TEUs						
		M aritime Port Score		1	2	
		Overall Maritime Result		1	2	
Railroads Border Crossing at POE						
Number rail cars	379	462		2	1	
Total volume [tons]	18,171	147,671		2	1	
Total Number TEUs	7,275	10,853		2	1	
Value of goods Millions\$	\$2.7	\$60.5		2	1	
		Railroad Scores		8	4	
		Overall Railroad Result		2	1	
Total AADT in Two Corridors	Share of AADT Among Corridors					
1,194,814	84.4\%	15.6\%	0.0\%			
POE, Airport \& Maritime port data are assigned to Corridors based on AADT distribution. Forecasts for highway, airport and maritime port data are from the California BINSTechnical Committee representative. See Tables 6, 8 and 9 for details. Other forecasts are derived from secondary sources. See Table 6 for details.						

Table 4
Corridor Changes and Results, 2000-2020

	Corridor Raw Data			Evaluation Results		
	A San Diego-TijuanaTecate	B Imperial- Mexicali	C	A	B	C
Highways						
Average Annual Daily Traffic	288,419	93,667		1	2	
Highway Length [in miles]	13.90	5.00		1	2	
LOS[$A=1$ to F3 =9]	0.294	0.539		2	1	
Capacity at Peak Hour	17,714	1,959		1	2	
		Highw ay Scores		5	7	
		Overall Highw ay Result		1	2	
Land Port of Entry Border Crossing						
Number trucks	546,307	177,419		1	2	
Total volume [tons]	1,896,902	616,038		1	2	
Value of goods Millions \$	\$25,124	\$8,159		1	2	
\#passenger vehicles \& buses	12,883,001	1,138,451		1	2	
		POE Scores		4	8	
		Overall POE Result		1	2	
Airports						
Total volume [tons]	187,883	61,017		1	2	
		Airport Scores		1	2	
		Overall Airport Result		1	2	
M aritime Ports						
Total volume [tons]	913,970	296,821		1	2	
Total number TEUs						
		Maritime Port Score		1	2	
		Overall Maritime Result		1	2	
Railroads Border Crossing at POE						
Number rail cars	177	216		2	1	
Total volume [tons]	8,495	69,039		2	1	
Total Number TEUs	3,401	5,074		2	1	
Value of goods Millions \$	\$1.7	\$37.7		2	1	
		Railroad Scores		8	4	
		Overall Railroad Result		2	1	
Total AADT in Two Corridors	Share of AADT Among Corridors					
382,087	75.5\%	24.5\%	0.0\%			
POE, Airport \& Maritime port data are assigned to Corridors based on AADT distribution. Differences are estimated by subtracting the year 2000 data from the 2020 projections. See Tables $5-8$ for details.						

Table 5
Corridor Percent Changes and Results, 2000-2020

	Corridor Raw Data			Evaluation Results		
	A San Diego-TijuanaTecate	B Imperial- Mexicali	C	A	B	C
Highways						
Average Annual Daily Traffic	40.1\%	101.0\%		2	1	
Highway Length [in miles]	4.8\%	1.3\%		1	2	
LOS [A =1 to F3 = 9]	7.5\%	40.5\%		2	1	
Capacity at Peak Hour	42.0\%	8.2\%		1	2	
		Highway Score		6	6	
		Overall High		1	1	
Land Port of Entry Border Crossing						
Number trucks	170.4\%	170.4\%		1	1	
Total volume [tons]	170.4\%	170.4\%		1	1	
Value of goods Millions\$	308.8\%	308.8\%		1	1	
\#passenger vehicles \& buses	72.4\%	72.4\%		1	1	
		POE Scores		4	4	
		Overall POE R		1	1	
Airports						
Total volume [tons]	234.1\%	234.1\%		1	1	
		Airport Scores		1	1	
		Overall Airpo		1	1	
Maritime Ports						
Total volume [tons]	59.5\%	59.5\%		1	1	
Total number TEUs						
		M aritime Port		1	1	
		Overall Marit	ult	1	1	
Railroads Border Crossing at POE						
Number rail cars	187.8\%	187.8\%		1	1	
Total volume [tons]	187.8\%	187.8\%		1	1	
Total Number TEUs	187.8\%	187.8\%		1	1	
Value of goods Millions\$	265.3\%	265.3\%		1	1	
		Railroad Score		4	4	
		Overall Railr		1	1	
Notes:						
See Tables 6-9 for details.						
Lower score represents greater need.						

Table 6
Highway Data

Summary Data for the San Diego-Tijuana-Tecate Corridor for 2000										
	I-5	I-8	I-15	1-805	SR 11	SR 94	SR 125	SR 188	SR 905	Total
AADT:	172,043	68,163	148,330	187,041	0	51,639	40,969	6,700	45,088	719,972
Highway Length:	72.40	77.80	54.30	28.00	0.00	37.60	11.20	1.90	9.20	292.40
LOS:	D	B	D	D		C	D	B	B	C
LOS \#.	4.7	2.6	4.6	4.8		3.5	4.6	2.0	3.0	
Weighted Average LOS:	1.2	0.7	0.9	0.5	0.0	0.4	0.2	0.0	0.1	3.9
Capacity:	8,300	5,153	8,065	9,041	0	3,833	2,568	2,000	3,217	42,177
Summary Data for the San Diego-Tijuana-Tecate Corridor for 2020										
	I-5	I-8	I-15	1-805	SR 11	SR 94	SR 125	SR 188	SR 905	Total
AADT:	230,033	70,758	179,199	231,343	40,500	61,667	99,830	17,811	77,252	1,008,392
Highway Length:	72.40	77.80	54.30	28.00	2.70	37.60	22.40	1.90	9.20	306.30
LOS:	F0	B	C	E	B	C	C	B	B	D
LOS \#.	6.7	2.6	3.3	5.9	2.0	3.4	4.0	2.7	2.8	
Weighted Average LOS:	1.6	0.7	0.6	0.5	0.0	0.4	0.3	0.0	0.1	4.2
Capacity:	8,860	5,594	10,961	9,396	4,400	4,828	7,080	2,400	6,370	59,891
Summary Data for the Imperial-M exicali Corridor for 2000										
	I-8	I-10	SR 7	SR 78	SR 86	SR 98	SR 111	SR 115	SR 186	Total
AADT:	12,067	23,244	9,700	2,766	11,044	10,999	13,219	2,416	7,300	92,755
Highway Length:	97.00	131.30	1.20	21.00	48.90	11.80	32.50	32.00	2.10	377.80
LOS:	A	A	B	B	A	B	A	B	B	A
LOS \#.	1.0	1.0	2.0	2.0	1.5	2.2	2.0	2.0	2.0	
Weighted Average LOS:	0.3	0.3	0.0	0.1	0.2	0.1	0.2	0.2	0.0	1.3
Capacity:	4,000	4,786	2,400	2,023	2,430	2,020	2,160	2,051	2,000	23,871
Summary Data for the Imperial-M exicali Corridor for 2020										
	I-8	I-10	SR 7	SR 78	SR 86	SR 98	SR 111	SR 115	SR 186	Total
AADT:	18,179	60,150	26,558	4,269	17,526	19,918	24,167	5,655	10,000	186,422
Highway Length:	97.00	131.30	6.70	21.00	48.90	11.80	32.00	32.00	2.10	382.80
LOS:	A	B	C	A	A	B	B	B	C	A
LOS \#.	1.0	2.3	3.4	1.9	1.7	2.4	2.3	2.1	3.0	
Weighted Average LOS:	0.3	0.8	0.1	0.1	0.2	0.1	0.2	0.2	0.0	1.9
Capacity:	4,000	4,906	2,400	2,069	2,503	2,315	2,808	2,429	2,400	25,830
Notes: SR 125 only includes data from segments 1-3.$\text { LOS coding: } \mathrm{A}=1, \mathrm{~B}=2, \mathrm{C}=3, \mathrm{D}=4, \mathrm{E}=5, \mathrm{~F} 0=6, \mathrm{~F} 1=7, F 2=8, \mathrm{~F} 3=9$										

Table 7
Land Ports of Entry [POE] Crossing Data

	San Y sidro	Otay Mesa	Tecate	Calexico	Calexico E	Andrade	Total
Federal inspection facilities at POE?	Yes	Yes	Yes	Yes	Yes	Yes	
Northbound POE Crossing Data for $2000{ }^{1}$							
Number trucks	0	683,703	61,707	0	281,032	1,578	1,028,020
Tons of goods	0	2,265,250	242,163	0	1,062,104	0	3,569,517
Value [Millions \$] moved by truck	\$0.0	\$10,650.0	\$488.0	\$0.0	\$4,800.0	\$2.1	\$15,940.1
Number of passenger vehicles	14,054,104	4,855,639	1,149,431	6,823,029	2,337,807	617,787	29,837,797
Number of buses	104,040	45,688	544	1,249	173	77	151,771
Number passenger vehicles \& buses	14,158,144	4,901,327	1,149,975	6,824,278	2,337,980	617,864	29,989,568
Number of rail cars	202	0	0	246	0	0	X
Volume of tons moved by rail	9,676	0	0	78,632	0	0	X
Number of TEUs moved by rail	3,874	0	0	5,779	0	0	X
Value [Millions \$] moved by rail	\$1.0	0	0	\$22.8	0	0	X
Northbound POE Crossing Data for $2020{ }^{2}$							
Number trucks							1,751,746
Tons of goods							6,082,457
Value [Millions \$] moved by truck							\$49,223.0
Number of passenger vehicles							X
Number of buses							X
Number passenger vehicles \& buses							51,700,416
Number of rail cars	379			462			X
Volume of tons moved by rail	18,171			147,671			X
Number of TEUs moved by rail	7,275			10,853			X
Value [Millions \$] moved by rail	\$2.7			\$60.5			X
Per Cent Change in POE Data: 2000 to 2020							
Number trucks ${ }^{3}$							170.4\%
Tons of goods ${ }^{3}$							170.4\%
Value [Millions \$] moved by truck ${ }^{3}$							308.8\%
Number of passenger vehicles							X
Number of buses							X

Number passenger vehicles \& buses ${ }^{4}$							72.4\%
Number of rail cars ${ }^{5}$	187.8\%			187.8\%			X
Volume of tons moved by rail ${ }^{5}$	187.8\%			187.8\%			X
Number of TEUs moved by rail ${ }^{5}$	187.8\%			187.8\%			X
Value [Millions \$] moved by rail ${ }^{5}$	265.3\%			265.3\%			X

Notes

Number of trucks = northbound trucks that cross the US-M exico border
Tons of goods = carried by northbound trucksthat cross the US-M exico border.
Value [Millions \$] moved by truck = value of goods moved by northbound trucks that cross the US-Mexico border
Number of passenger vehicles = northbound passenger vehidesthat crossthe US-M exico border
Number of buses = northbound buses that cross the US-M exico border.
Number passenger vehides \& buses =sum of northbound passenger vehicles and buses that cross the USM exico border.
Number of rail cars = northbound rail cars that cross the US.Mexico border.
Volume of tons moved by rail =transported by the northbound rail cars that cross the US-M exico border.
Number of TEUs moved by rail =Twenty foot Equivalent containers [TEUs] moved by rail that are northbound and cross the US-Mexico border.
Value [Millions $\$$] moved by rail = value of goods transported by northbound rail cars that cross the US-M exico border.
Cells are X out when no totals are intended. Rail data, for example, are assigned to corridors by the BINS State Technical Committee representative. This makes railroads different from airports, maritime ports, passenger vehides \& buses, and trucks that are summed and distributed to the corridors using the distribution of AADT.

Sources:

1 From California BINSTechnical Committee representative.
2 Derived by multiplying the 2000 data by the growth rates.
The growth rates for trucks, tons and dollars are derived from data published by the Office of Freight Management and Operations, FHWA, USDepartment of Transportation, Freight Transportation Profile-California". There are absolute values forecast for the year 2020 for tons and dollars with 1998 data as the base year. Growth rates are calculated for the 22 year period, and 20 year growth rates are estimated. These 20 -year growth rates are the ones used in this table. For tons and trucks the compound annual growth rate is 2.7%. For the value of goods moved by truck, the compound annual growth rate is 5.8%.
4 The growth rate for passenger vehides and buses is the same as that observed for the change in Average Annual Daily Traffic [AADT] in the highway segments nearest the US-M exico border. These AADT data were obtained for I-5, SR 7, SR 11, SR 111, SR 186, SR 188 and SR 905 from the California BINSTechnical Committee representative. The total change in AADT was 152,204 or 72.4%. The 72.4% is used to forecast the number of border crossings for passenger vehides and buses in 2020.
5 The growth rates for rail cars, tons, TEUs \& dollars are derived from data published by the Office of Freight Management and Operations, FHWA, USDepartment of Transportation, "Freight Transportation Profile - California". There are absolute values forecast for the year 2020 for tons and dollars with1998 data as the base year. Growth rates are calculated for the 22 year period, and 20 year growth rates are estimated. These 20 -year growth rates are the ones used in this table. For rail cars, tons of goods moved, and TEUs moved, the compound annual growth rate is 3.2%. For the value of goods moved by rail the compound annual growth rate is 5.0%.

Table 8 Airport Data

	Lindbergh	Brown	Calexico	Imperial	Gillespie	Montgomery	Total
Within 100 km of the US-Mexico Border?	Yes	Yes	Yes	Yes	Yes	Yes	
Designated as an International POE?	Yes	No	No	No	No	No	
Historical Data for 2000							
Longest runway length	9,400						9,400
Tons of goods exported \& imported	106,300						106,300
Airport served by railroad facility?	N						X
If yes, name of railroad							X
On-land movement of air freight	X	X	X	X	X	X	X
Share of goods moved by truck							X
Share of goods moved by railroad							X
Projections for 2020							
Longest runway length							
Date becomes operational							X
Tons of goods exported \& imported	355,200						355,200
Airport served by railroad facility?							X
If yes, name of railroad							X
On-land movement of air freight	X	X	X	X	X	X	X
Share of goods moved by truck							
Share of goods moved by railroad							
Per Cent Change: 2000 to 2020							
Longest runway length							
Tons of goods exported \& imported							234.1\%
Note: Only data for facilities that meet minimum arit Sources: California BINSTechnical Committee repres	teria are included. sentative.						

Table 9 Maritime Port Data

Within 100 km of the US-M exico Border?	Yes			
Designated as an International POE?	Yes			
	2000	2020	Changes 2000 to 2020	
			Absolute	Percent
Main Channel Depth	42			
Total tons of goods exported \& imported	2,036,356	3,247,147	1,210,791	59.5\%
Total number TEUs exported \& imported	0			
Maritime ports served by railroad facility?	Y			
If yes, name of railroad	BNSF			
On-land movement of air freight	X	X	X	X
Share of goods moved by truck				
Share of goods moved by railroad				
Sources: California BINSTechnical Committee representative.				

Map 1
California Border Area

CALIFORNIA HIGHWAY DATA

Methodology For Calculating Corridor Averages for Average Annual Daily Traffic [AADT], Level of Service [LOS], and Peak Hour Traffic Carrying Capacity

Corridor totals for highways are obtained for highway length, AADT, LOS and Peak Hour Traffic Carrying Capacity. The corridor total for each of these indicators is obtained by adding the data for each of the highways assigned to the corridor. The State BINS Technical Committee representative assigned the highways to the corridors. Each of the compilations for each of the indicators is now reviewed.

Highway Length—the length of each highway within the 100 km limit. The length is obtained for each highway by subtracting the beginning mile marker, from the last mile marker. If segments are omitted, those segments and their data are omitted from the highway total. The highway length for the entire corridor is obtained by summing the highway length for each highway in the corridor.

Weighted Average-an average in which each of the observations is multiplied [or "weighted"] by a factor before calculations. In addition, these weights sum to unity or one [1]. Weighted averages are used so that short and long segments of roadway are counted proportionately in calculating the average for the entire highway.

Average Annual Daily Traffic-the weighted average AADT for each highway is obtained in several steps. Step 1: obtain the segment weights by dividing each segment length by the total highway length. The percent of the highway contained in the segment under investigation is the highway weight. Step 2: This highway weight is then multiplied by the AADT for that segment to obtain the weighted AADT for the segment. Step 3: The weighted AADT for all the segments are summed to obtain the weighted average AADT for the highway. The weighted average AADT for all the highways in the corridor are then summed to obtain the Corridor Total AADT.

Level of Service-the weighted average LOS for each highway is calculated in the same manner as that used for AADT. A major difference is that LOS is provided in the letters A, B, C, D, E, FO, F1, F2 and F3. These letters are converted to numbers using the following system, $A=1, B=2, C=3, D=4, E=5, F 0=6$, F1 $=7$, F2 $=8$, and $F 3=9$. After the conversions the following steps are used to calculate LOS for each highway. Step 1: obtain the segment weights by dividing each segment length by the total highway length. The percent of the highway contained in the segment under investigation is the highway weight. Step 2: This highway weight is then multiplied by the LOS number for that segment to obtain the weighted LOS number for the segment. Step 3: The weighted LOS number for all the segments are summed to obtain the weighted average LOS for the highway. The weighted average LOS number for all the highways in the corridor are then summed to obtain the Corridor Total LOS.

Peak Hour Traffic Carrying Capacity [PCAP]-the weighted average PCAP for each highway is obtained in several steps. Step 1: obtain the segment weights by dividing each segment length by the total highway length. The percent of the highway contained in the segment under investigation is the highway weight. Step 2: This highway weight is then multiplied by the PCAP for that segment to obtain the weighted PCAP for the segment. Step 3: The weighted PCAP for all the segments are summed to obtain the weighted average PCAP for the highway. The weighted average PCAP for all the highways in the corridor are then summed to obtain the Corridor Total PCAP.

HIGHWAY DATA COMPILED INTO CORRIDOR FORM USED IN TABLE 6 OF CORRIDOR EVALUATION FOR CALIFORNIA

Segment Length Is the Basis for Estimating The Weighted Average for AADT, Los And Capacity.

Table 1
Summary Corridor Results

Summary Data for the San Diego / Tijuana /Tecate Corridor for 2000										
	I-5	I-8	I-15	I-805	SR 11	SR 94	SR 125	SR 188	SR 905	Total
AADT:	172,043	68,163	148,330	187,041	0	51,639	40,969	6,700	45,088	719,972
Highway Length:	72.4	77.8	54.3	28.0	0.0	37.6	11.2	1.9	9.2	292.4
LOS:	D	B	D	D		C	D	B	B	C
LOS \#.	4.7	2.6	4.6	4.8		3.5	4.6	2.0	3.0	
Weighted Average LOS:	1.2	0.7	0.9	0.5	0.0	0.4	0.2	0.0	0.1	3.9
Capacity:	8,300	5,153	8,065	9,041	0	3,833	2,568	2,000	3,217	42,177
Summary Data for the San Diego / Tijuana /Tecate Corridor for 2020										
	I-5	I-8	I-15	I-805	SR 11	SR 94	SR 125	SR 188	SR 905	Total
AADT:	230,033	70,758	179,199	231,343	40,500	61,667	99,830	17,811	77,252	1,008,392
Highway Length:	72.4	77.8	54.3	28.0	2.7	37.6	22.4	1.9	9.2	306.3
LOS:	F0	B	C	E	B	C	C	B	B	D
LOS \#.	6.7	2.6	3.3	5.9	2.0	3.4	4.0	2.7	2.8	
Weighted Average LOS:	1.6	0.7	0.6	0.5	0.0	0.4	0.3	0.0	0.1	4.2
Capacity:	8,860	5,594	10,961	9,396	4,400	4,828	7,080	2,400	6,370	59,891
Summary Data for the Imperial / M exicali Corridor for 2000										
	I-8	I-10	SR 7	SR 78	SR 86	SR 98	SR 111	SR 115	SR 186	Total
AADT:	12,067	23,244	9,700	2,766	11,044	10,999	13,219	2,416	7,300	92,755
Highway Length:	97.0	131.3	1.2	21.0	48.9	11.8	32.5	32.0	2.1	377.8
LOS:	A	A	B	B	A	B	A	B	B	A
LOS \#.	1.0	1.0	2.0	2.0	1.5	2.2	2.0	2.0	2.0	
Weighted Average LOS:	0.3	0.3	0.0	0.1	0.2	0.1	0.2	0.2	0.0	1.3
Capacity:	4,000	4,786	2,400	2,023	2,430	2,020	2,160	2,051	2,000	23,871

Summary Data for the Imperial / M exicali Corridor for 2020										
	I-8	I-10	SR 7	SR 78	SR 86	SR 98	SR 111	SR 115	SR 186	Total
AADT:	18,179	60,150	26,558	4,269	17,526	19,918	24,167	5,655	10,000	186,422
Highway Length:	97.0	131.3	6.7	21.0	48.9	11.8	32.0	32.0	2.1	382.8
LOS:	A	B	C	A	A	B	B	B	C	A
LOS \#.	1.0	2.3	3.4	1.9	1.7	2.4	2.3	2.1	3.0	
Weighted Average LOS:	0.3	0.8	0.1	0.1	0.2	0.1	0.2	0.2	0.0	1.9
Capacity:	4,000	4,906	2,400	2,069	2,503	2,315	2,808	2,429	2,400	25,830
LOS coding: $\mathrm{A}=1, \mathrm{~B}=2, \mathrm{C}=3, \mathrm{D}=4, \mathrm{E}=5, F 0=6, F 1=7, F 2=8, F 3=9$										

Table 2
First Segment Growth Rates

	Average Annual Daily Traffic			Percent Change	Port of Entry to which the Highway is Connected		
	2000	2020	Change				
Segment 1 of Highways Directly Connected to the Land Ports of Entry							
Interstate 5	108,478	121,200	12,722	11.7\%	San Y sidro		
State Route 7	9,700	39,200	29,500	304.1\%	Calexico East		
State Route 11		40,500	40,500		East Otay Mesa		
State Route 111	34,064	47,800	13,736	40.3\%	Calexico		
State Route 186	7,300	10,000	2,700	37.0\%	Andrade		
State Route 188	6,700	10,900	4,200	62.7\%	Tecate		
State Route 905	44,000	92,846	48,846	111.0\%	Otay Mesa		
Total:	210,242	362,446	152,204	72.4\%			
Notes: The AATD shown above is the value for the first segment of each of the highways for calendar year 2000 and projections for 2020. The Change is the difference between the two numbers, and the percent change is calculated by dividing the difference by the AADT for calendar year 2000.							
All of these highways are directly connected to the Land Ports of Entry, and the US-M exico border. The total growth rate of 72.4% is the growth rate that is used to calculate the 2020 border crossings of passenger vehicles and buses.							
Source: California BINSTechnical Committee representative							

THE SAN DIEGO / TIJUANA / TECATE CORRIDOR: CALENDAR YEAR 2000 DATA

Table 3a
Interstate 5 Data 2000

Within 100 km of the US-M exico Border?					Y		
Serves an International POE?					Y		
Seg- ment \#	Begin Post Mile	$\begin{aligned} & \text { End } \\ & \text { Post } \\ & \text { Mile } \end{aligned}$	Length Miles	Avg Ann Daily Traffic	Level of Service		Peak Hr Traffic Capacity
					A to F3	$\begin{aligned} & 1 \text { to } \\ & 9 \end{aligned}$	
1	0.000	0.900	0.900	108,478	C	3	8,000
2	0.900	3.100	2.200	69,471	A	1	8,000
3	3.100	4.700	1.600	112,097	C	3	8,600
4	4.700	6.800	2.100	156,412	D	4	8,600
5	6.800	9.400	2.600	161,771	D	4	8,800
6	9.400	12.600	3.200	200,479	F0	6	8,000
7	12.600	14.100	1.500	166,405	FO	6	8,000
8	14.100	15.000	0.900	190,400	FO	6	8,000
9	15.000	16.100	1.100	212,017	FO	6	9,200
10	16.100	17.500	1.400	198,916	FO	6	8,600
11	17.500	20.100	2.600	191,334	E	5	8,600
12	20.100	23.500	3.400	216,115	F0	6	8,600
13	23.500	26.000	2.500	202,870	FO	6	8,600
14	26.000	30.700	4.700	164,418	E	5	8,000
15	30.700	32.900	2.200	256,962	F1	7	8,600
16	32.900	38.600	5.700	225,711	F0	6	8,600
17	38.600	42.700	4.100	200,400	FO	6	8,000
18	42.700	47.000	4.300	192,939	FO	6	8,000
19	47.000	51.200	4.200	199,142	FO	6	8,000
20	51.200	53.200	2.000	186,098	E	5	8,000
21	53.200	53.900	0.700	179,300	E	5	8,600
22	53.900	56.400	2.500	145,000	C	3	10,000
23	56.400	72.400	16.000	124,428	C	3	8,000
Sum			72.400	4,061,163		114	193,400
Estimating the Weighted Averages for I-5							
Segment	Weight	AADT		Level of Service			Capacity
1	1.2\%	1,348			0.037		99
2	3.0\%	2,111			0.030		243
3	2.2\%	2,477			0.066		190
4	2.9\%	4,537			0.116		249
5	3.6\%	5,809			0.144		316
6	4.4\%	8,861			0.265		354
Segment	Weight	AADT		Level of Service			Capacity
7	2.1\%	3,448			0.124		166
8	1.2\%	2,367					99
9	1.5\%	3,221			0.075		140

10	1.9%	3,846		0.116	166
11	3.6%	6,871		0.180	309
	100.0%	172,043	D	4.740	8,300
Notes: LOS coding: $\mathrm{A}=1, \mathrm{~B}=2, \mathrm{C}=3, \mathrm{D}=4, \mathrm{E}=5, \mathrm{FO}=6, \mathrm{~F} 1=7, \mathrm{~F} 2=8, \mathrm{~F} 3=9$					
Source: California BINSTechnical Committee representative					

Table 3b
Interstate 8 Data 2000

Within 100 km of the US-M exico Border?					Y		
Serves an International POE?					Y		
$\begin{aligned} & \hline \begin{array}{l} \text { Seg- } \\ \text { ment } \\ \# \end{array} \end{aligned}$	Begin Post Mile	End Post Mile	Length Miles	Avg Ann Daily Traffic	Level of Service		Peak Hr Traffic Capacity
					$\begin{array}{\|l\|} \hline \text { A to } \\ \text { F3 } \end{array}$	$\begin{aligned} & 1 \text { to } \\ & 9 \end{aligned}$	
$\begin{aligned} & 1 \\ & 2 \\ & \hline \end{aligned}$	Overlapping Segments $1 \& 2$ dropped						
3	0.000	2.400	2.400	219,379	F0	6	8,600
4	2.400	4.400	2.000	229,606	F0	6	8,600
5	4.400	5.600	1.200	279,300	F1	7	9,200
6	5.600	9.600	4.000	251,170	FO	6	10,000
7	9.600	12.400	2.800	195,790	F0	6	8,600
8	12.400	15.800	3.400	209,110	FO	6	8,600
9	15.800	18.700	2.900	110,307	F0	6	5,200
10	18.700	25.700	7.000	65,920	D	4	4,000
11	25.700	28.500	2.800	55,400	D	4	4,600
12	28.500	31.300	2.800	34,600	B	2	4,600
13	31.300	34.300	3.000	22,800	A	1	4,600
14	34.300	37.800	3.500	22,800	A	1	4,600
15	37.800	65.900	28.100	14,186	A	1	4,000
16	65.900	77.800	11.900	11,609	A	1	4,000
17							
18							
19							
20							
Sum			77.800	1,721,977		57	89,200
Estimating the Weighted Averages for I-8							
Segment	Weight	AADT		Level of S	vice		pacity
$\begin{array}{\|l} 1 \\ 2 \\ \hline \end{array}$		Overlapping Segments 1 \& 2 droppe					
3	3.1\%	6,767			0.185		
4	2.6\%	5,902			0.154		
5	1.5\%	4,308			0.108		
6	5.1\%	12,914			0.308		
7	3.6\%	7,046			0.216		
8	4.4\%	9,138			0.262		
9	3.7\%	4,112			0.224		

10	9.0\%	5,931		0.360	360
11	3.6\%	1,994		0.144	166
12	3.6\%	1,245		0.072	166
13	3.9\%	879		0.039	177
14	4.5\%	1,026		0.045	207
15	36.1\%	5,124		0.361	1,445
16	15.3\%	1,776		0.153	612
Segment	Weight	AADT	Lev	ice	Capacity
17					
18					
19					
20					
Sum	100.0\%	68,163	B	2.631	5,153
Notes	LOS coding: $\mathrm{A}=1, \mathrm{~B}=2, \mathrm{C}=3, \mathrm{D}=4, \mathrm{E}=5, \mathrm{FO}=6, \mathrm{~F}=7, F 2=8, F 3=9$				
Source:	California BINSTechnical Committee representative				

Table 3c
State Route 11 Data 2000

Within 100 km of the US-M exico Border?					Y		
Serves an International POE?					Y		
$\begin{aligned} & \hline \text { Seg- } \\ & \text { ment } \\ & \# \end{aligned}$	Begin Post Mile	$\begin{array}{\|l\|} \hline \text { End } \\ \text { Post } \\ \text { Mile } \end{array}$	Length Miles	Avg Ann Daily Traffic	Level of Service		Peak Hr Traffic Capacity
					$\begin{array}{\|l\|} \hline \text { A to } \\ \text { F3 } \end{array}$	$\begin{aligned} & 1 \text { to } \\ & 9 \end{aligned}$	
n/a							
Estimating the Weighted Averages for SR 11							
Segment	Weight	AADT		Level of Service			Capacity
n/a	n/a	n/a		n/a	n/a		/a
Notes LOS coding: $\mathrm{A}=1, \mathrm{~B}=2, \mathrm{C}=3, \mathrm{D}=4, \mathrm{E}=5, \mathrm{FO}=6, \mathrm{F1}=7, \mathrm{~F}=8, \mathrm{F3}=9$							
Source:	California BINSTechnical Committee representative						

Table 3d
Interstate 15 Data 2000

Within 100 km of the US-M exico Border?					Y		
Serves an International POE?					Y		
Segment \#	Begin Post Mile	End Post Mile	Length Miles	Avg Ann Daily Traffic	Level of Service		Peak Hr Traffic Capacity
					A to F3	1 to 9	
1	0.000	2.200	2.200	103,265	F0	6	6,000
2	2.200	3.400	1.200	107,600	C	3	6,600
3	3.400	5.600	2.200	69,715	F	5	2,000
4	5.600	6.100	0.500	89,000	D	4	6,000
5	6.100	9.300	3.200	191,116	F0	6	9,200
6	9.300	10.600	1.300	154,175	E	5	8,000
7	10.600	12.100	1.500	154,700	E	5	8,000
8	12.100	15.900	3.800	286,012	F0	6	10,000
9	15.900	18.200	2.300	258,147	F2	8	9,200
10	18.200	19.400	1.200	218,300	F1	7	8,000
11	19.400	26.000	6.600	213,991	F0	6	8,600
12	26.000	27.600	1.600	215,940	F1	7	8,600
13	27.600	31.500	3.900	176,879	D	4	9,200
14	31.500	36.600	5.100	93,610	B	2	8,000
15	36.600	46.500	9.900	88,737	D	4	8,000
16	46.500	54.300	7.800	91,020	C	3	8,000
Sum			54.300	2,512,207		81	123,400
Estimating the Weighted Averages for I-15							
Segment	Weight	AADT		Level of Service		Capacity	
1	4.1\%	4,184			0.243		243
2	2.2\%	2,378			0.066		146
3	4.1\%	2,825			0.203		81
4	0.9\%	820			0.037		55
5	5.9\%	11,263			0.354		542
6	2.4\%	3,691			0.120		192
7	2.8\%	4,273			0.138		221
8	7.0\%	20,016			0.420		700
9	4.2\%	10,934			0.339		390
10	2.2\%	4,824			0.155		177
11	12.2\%	26,010			0.729		1,045
12	2.9\%	6,363			0.206		253
13	7.2\%	12,704			0.287		661
14	9.4\%	8,792			0.188		751
15	18.2\%	16,179			0.729		1,459
16	14.4\%	13,075			0.431		1,149
Sum	93.7\%	148,330		D	4.645		8,065
Notes LOS coding: $A=1, B=2, C=3, D=4, E=5, F 0=6, F 1=7, F 2=8, F 3=9$Source: \quad California BINSTechnical Committee representative							

Table 3e
State Route 94 Data 2000

Within 100 km of the US-Mexico Border?					Y		
Serves an International POE?					Y		
Segment \#	Begin Post Mile	$\begin{aligned} & \text { End } \\ & \text { Post } \\ & \text { Mile } \end{aligned}$	Length Miles	Avg Ann Daily Traffic	Level of Service		Peak Hr Traffic Capacity
					$\begin{aligned} & \text { A to } \\ & \text { F3 } \end{aligned}$	$\begin{aligned} & 1 \text { to } \\ & 9 \end{aligned}$	
1	1.400	3.200	1.800	128,573	E	5	8,400
2	3.200	4.100	0.900	156,406	E	5	9,660
3	4.100	6.200	2.100	181,005	E	5	10,500
4	6.200	9.800	3.600	167,400	F0	6	8,400
5	9.800	10.100	0.300	156,800	E	5	8,400
6	10.100	13.300	3.200	70,735	D	4	4,000
7	13.300	14.300	1.000	41,000	D	4	2,800
8	14.300	14.900	0.600	49,600	F0	6	2,800
9	14.900	19.800	4.900	20,600	E	5	2,000
10	19.800	24.800	5.000	10,713	B	2	2,000
11	24.800	39.000	14.200	6,200	B	2	2,000
Sum			37.600	989,032		49	60,960
Estimating the Weighted Averages for SR 94							
Segment	Weight	AADT		Level of	vice		acity
1	4.8\%	6,155			0.239		
2	2.4\%	3,744			0.120		
3	5.6\%	10,109			0.279		
4	9.6\%	16,028			0.574		
5	0.8\%	1,251			0.040		
6	8.5\%	6,020			0.340		
7	2.7\%	1,090			0.106		
8	1.6\%	791			0.096		
9	13.0\%	2,685			0.652		
10	13.3\%	1,425			0.266		
11	37.8\%	2,341			0.755		
Sum	100.0\%	51,639		C	3.468		
Notes LOS coding: $A=1, B=2, C=3, D=4, E=5, F 0=6, F 1=7, F 2=8, F 3=9$							
Source:	California BINSTechnical Committee representative						

Table $3 f$
State Route 125 Data 2000

Table 3g
State Route 188 Data 2000

Within 100 km of the US-Mexico Border?					Y		
Serves an International POE?					Y		
$\begin{aligned} & \text { Segment } \\ & \# \end{aligned}$	Begin Post Mile	End Post Mile	Length Miles	$\begin{array}{\|l} \hline \text { Avg Ann } \\ \text { Daily } \\ \text { Traffic } \end{array}$	Level of Service		Peak Hr Traffic Capacity
					A to F3	1 to 9	
1	0.000	0.100	0.100	6,700	B	2	2,000
2	0.100	0.600	0.500	6,700	B	2	2,000
3	0.600	1.900	1.300	6,700	B	2	2,000
Sum			1.900	20,100		6	6,000
Estimating the Weighted Averages for SR 188							
Segment	Weight	AADT		Level of	ice		acity
1	5.3\%	353			0.105		
2	26.3\%	1,763			0.526		
3	68.4\%	4,584			1.368		
Sum	100.0\%	6,700		B	2.000		
Notes	LOS coding: $\mathrm{A}=1, \mathrm{~B}=2, \mathrm{C}=3, \mathrm{D}=4, \mathrm{E}=5, \mathrm{FO}=6, \mathrm{Fl}=7, \mathrm{~F} 2=8, \mathrm{F3}=9$						
Source:	California BINSTechnical Committee representative						

Table 3h
Interstate 805 Data 2000

Table 3i
Interstate 905 Data 2000

Within 100 km of the US-Mexico Border?					Y		
Serves an International POE?					Y		
$\begin{aligned} & \text { Segment } \\ & \# \end{aligned}$	Begin Post Mile	$\begin{aligned} & \text { End } \\ & \text { Post } \\ & \text { Mile } \end{aligned}$	$\begin{aligned} & \text { Length } \\ & \text { Miles } \end{aligned}$	Avg Ann Daily Traffic	Level of Service		Peak Hr Traffic Capacity
					A to F3	1 to 9	
1	2.800	5.200	2.400	44,000	B	2	4,000
2	5.200	6.600	1.400	51,000	C	3	4,000
3	6.600	7.600	1.000	60,400	D	4	2,400
4	7.600	8.700	1.100	54,700	D	4	2,400
5	8.700	9.700	1.000	39,600	D	4	2,400
6	9.700	10.600	0.900	39,600	B	2	4,000
7	10.600	12.000	1.400	30,000	C	3	2,400
Sum			9.200	319,300		22	21,600
Estimating the Weighted Averages for 1-905							
Segment	Weight	AADT		Level of	vice		acity
1	26.1\%	11,478			0.522		
2	15.2\%	7,761			0.457		
3	10.9\%	6,565			0.435		
4	12.0\%	6,540			0.478		
5	10.9\%	4,304			0.435		
6	9.8\%	3,874			0.196		
7	15.2\%	4,565			0.457		
Sum	100.0\%	45,088		B	2.978		
Notes LOS coding: $\mathrm{A}=1, \mathrm{~B}=2, \mathrm{C}=3, \mathrm{D}=4, \mathrm{E}=5, \mathrm{FO}=6, \mathrm{F1}=7, \mathrm{~F} 2=8, \mathrm{F3}=9$							
Source:	California BINSTechnical Committee representative						

THE SAN DIEGO / TIJUANA / TECATE CORRIDOR: CALENDAR YEAR 2020 DATA

Table 4a
Interstate 5 Data 2020

Within 100 km of the US-M exico Border?					Y		
Serves an International POE?					Y		
Segment \#	Begin Post Mile	End Post Mile	Length Miles	Avg Ann Daily Traffic	Level of Service		Peak Hr Traffic Capacity
					A to F3	$\begin{aligned} & 1 \text { to } \\ & 9 \end{aligned}$	
1	0.000	0.900	0.900	121,200	E	5	8,000
2	0.900	3.100	2.200	81,813	B	2	8,000
3	3.100	4.700	1.600	153,573	F0	6	8,000
4	4.700	6.800	2.100	200,798	F3	9	8,000
5	6.800	9.400	2.600	215,590	F3	9	8,000
6	9.400	12.600	3.200	228,299	F1	7	10,000
7	12.600	14.100	1.500	207,853	F2	8	8,600
8	14.100	15.000	0.900	214,459	F0	6	8,600
9	15.000	16.100	1.100	264,900	F0	6	10,600
10	16.100	17.500	1.400	253,747	F3	9	8,600
11	17.500	20.100	2.600	208,997	F0	6	8,600
12	20.100	23.500	3.400	257,778	F0	6	8,600
13	23.500	26.000	2.500	229,146	F0	6	8,000
14	26.000	30.700	4.700	213,745	F1	7	8,000
15	30.700	32.900	2.200	415,500	F0	6	12,800
16	32.900	38.600	5.700	317,804	F2	8	10,000
17	38.600	42.700	4.100	266,509	F0	6	10,000
18	42.700	47.000	4.300	249,913	F0	6	10,000
19	47.000	51.200	4.200	243,048	F0	6	10,000
20	51.200	53.200	2.000	248,721	F2	8	8,000
21	53.200	53.900	0.700	209,100	F1	7	8,000
22	53.900	56.400	2.500	200,224	F1	7	8,000
23	56.400	72.400	16.000	200,000	F1	7	8,000
Sum			72.400	5,202,717		153	204,400
Estimating the Weighted Averages for I-5							
Segment	Weight	AADT		Level of Service			Capacity
1	1.2\%	1,507			0.062		99
2	3.0\%	2,486			0.061		243
3	2.2\%	3,394			0.133		177
4	2.9\%	5,824			0.261		232
5	3.6\%	7,742			0.323		287
6	4.4\%	10,091			0.309		442
Segment	Weight	AADT		Level of Service			Capacity
7	2.1\%	4,306			0.166		178
8	1.2\%	2,666			0.075		107

9	1.5%	4,025		0.091	161
10	1.9%	4,907		0.174	166
11	3.6%	7,505		0.215	309
12	4.7%	12,106		0.282	404
13	3.5%	7,913		0.207	276
14	6.5%	13,876		0.454	519
15	3.0%	12,626		0.182	389
16	7.9%	25,020		0.630	787
17	5.7%	15,092		0.340	566
18	5.9%	14,843		0.356	594
19	5.8%	14,099		0.348	580
20	2.8%	6,871		0.221	221
21	1.0%	2,022		0.068	77
22	3.5%	6,914		0.242	276
23	22.1%	44,199		1.547	1,768
	100.0%	230,033		6.747	8,860

Notes: LOS coding: $A=1, B=2, C=3, D=4, E=5, F 0=6, F 1=7, F 2=8, F 3=9$

Source: California BINSTechnical Committee representative

Table 4b
Interstate 8 Data 2020

Within 100 km of the US-M exico Border?					Y		
Serves an International POE?					Y		
Segment \#	Begin Post Mile	End Post Mile	Length Miles	Avg Ann Daily Traffic	Level of Service		Peak Hr Traffic Capacity
					$\begin{aligned} & \hline \text { A to } \\ & \text { F3 } \end{aligned}$	$\begin{aligned} & \hline 1 \text { to } \\ & 9 \end{aligned}$	
$\begin{aligned} & 1 \\ & 2 \\ & \hline \end{aligned}$	Overlapping Segments $1 \& 2$ dropped						
3	0.000	2.400	2.400	228,510	F0	6	10,600
4	2.400	4.400	2.000	234,105	F1	7	9,200
5	4.400	5.600	1.200	271,800	F2	8	9,200
6	5.600	9.600	4.000	259,671	F2	8	10,000
7	9.600	12.400	2.800	198,128	F1	7	8,000
8	12.400	15.800	3.400	192,545	F0	6	8,600
9	15.800	18.700	2.900	108,452	D	4	8,000
10	18.700	25.700	7.000	59,976	C	3	6,000
11	25.700	28.500	2.800	49,800	C	3	6,000
12	28.500	31.300	2.800	31,500	B	2	6,000
13	31.300	34.300	3.000	31,400	A	1	4,600
14	34.300	37.800	3.500	31,400	A	1	4,600
15	37.800	65.900	28.100	19,179	A	1	4,000
16	65.900	77.800	11.900	17,572	A	1	4,000
17							
18							
19							
20							
Sum			77.800	1,734,038		58	98,800
Estimating the Weighted Averages for I-8							
Segment	Weight	AADT		Level of S	ice		Capacity
$\begin{aligned} & 1 \\ & 2 \\ & \hline \end{aligned}$	Overlapping Segments $1 \& 2$ dropped						
3	3.1\%	7,049			0.185		327
4	2.6\%	6,018			0.180		237
5	1.5\%	4,192			0.123		142
6	5.1\%	13,351			0.411		514
7	3.6\%	7,131			0.252		288
8	4.4\%	8,415			0.262		376
9	3.7\%	4,043			0.149		298
10	9.0\%	5,396			0.270		540
11	3.6\%	1,792			0.108		216
12	3.6\%	1,134			0.072		216
13	3.9\%	1,211			0.039		177
14	4.5\%	1,413			0.045		207
15	36.1\%	6,927			0.361		1,445

16	15.3%	2,688		0.153	612
Segment	Weight	AADT		Level of Service	Capacity
17					
18					
19					
20	100.0%	70,758	B	2.611	5,594
Sum					
Notes Source:					

Table 4c
State Route 11 Data 2020

Within 100 km of the US-Mexico Border?					Y		
Serves an International POE?					Y		
Segment \#	Begin Post Mile	End Post Mile	Length Miles	Avg Ann Daily Traffic	Level of Service		Peak Hr Traffic Capacity
					$\begin{aligned} & \text { A to } \\ & \text { F3 } \end{aligned}$	$\begin{aligned} & \hline 1 \text { to } \\ & 9 \end{aligned}$	
1	0.000	2.700	2.700	40,500	B	2	4,400
Sum			2.700	40,500	B	2	4,400

Estimating the Weighted Averages for SR 11

Segment	Weight	AADT	Level of Service		Capacity
1	100.0%	40,500		2.000	4,400
Sum	100.0%	40,500	B	2.000	4,400
Notes	LOS coding: $A=1, B=2, C=3, D=4, E=5, F 0=6, F 1=7, F 2=8, F 3=9$				
Source:	California BINSTechnical Committee representative				

Table 4d
Interstate 15 Data 2020

Within 100 km of the US-M exico Border?					Y		
Serves an International POE?					Y		
$\begin{aligned} & \hline \text { Seg- } \\ & \text { ment } \\ & \# \end{aligned}$	Begin Post Mile	$\begin{array}{\|l\|l} \hline \text { End } \\ \text { Post } \\ \text { Mile } \end{array}$	Length Miles	Avg Ann Daily Traffic	Level of Service		Peak Hr Traffic Capacity
					$\begin{array}{\|l\|} \hline \text { A to } \\ \text { F3 } \end{array}$	$\begin{aligned} & 1 \text { to } \\ & 9 \end{aligned}$	
1	0.000	2.200	2.200	115,000	C	3	9,378
2	2.200	3.400	1.200	111,000	D	4	7,920
3	3.400	5.600	2.200	133,000	C	3	8,800
4	5.600	6.100	0.500	131,000	C	3	9,200
5	6.100	9.300	3.200	200,000	C	3	10,520
6	9.300	10.600	1.300	150,000	B	2	10,520
7	10.600	12.100	1.500	153,000	B	2	10,520
8	12.100	15.900	3.800	281,000	C	3	16,373
9	15.900	18.200	2.300	272,000	C	3	15,120
10	18.200	19.400	1.200	214,000	C	3	12,820
11	19.400	26.000	6.600	215,000	C	3	13,469
12	26.000	27.600	1.600	240,000	C	3	12,820
13	27.600	31.500	3.900	203,000	C	3	11,899
14	31.500	36.600	5.100	145,000	C	3	9,200
15	36.600	46.500	9.900	149,000	D	4	9,200
16	46.500	54.300	7.800	149,000	D	4	9,200
				2,861,000		49	176,959
Estimating the Weighted Averages for I-15 2,							
Segment	Weight	AADT		Level of Service			Capacity
1	4.1\%	4,659			0.122		380
2	2.2\%	2,453			0.088		175
3	4.1\%	5,389			0.122		357
4	0.9\%	1,206			0.028		85
5	5.9\%	11,786			0.177		620
6	2.4\%	3,591			0.048		252
7	2.8\%	4,227			0.055		291
8	7.0\%	19,665			0.210		1,146
9	4.2\%	11,521			0.127		640
10	2.2\%	4,729			0.066		283
11	12.2\%	26,133			0.365		1,637
12	2.9\%	7,072			0.088		378
13	7.2\%	14,580			0.215		855
14	9.4\%	13,619			0.282		864
15	18.2\%	27,166			0.729		1,677
16	14.4\%	21,403			0.575		1,322
Sum	100.0\%	179,199		C	3.297		10,961
Notes LOS coding: $\mathrm{A}=1, \mathrm{~B}=2, \mathrm{C}=3, \mathrm{D}=4, \mathrm{E}=5, \mathrm{FO}=6, \mathrm{F1}=7, \mathrm{F2}=8, \mathrm{F3}=9$ Source: California BINSTechnical Committee representative							

Table 4e
State Route 94 Data 2020

Within 100 km of the US-M exico Border?					Y							
Serves an International POE?					Y							
Segment \#	Begin Post Mile	$\begin{aligned} & \text { End } \\ & \text { Post } \\ & \text { Mile } \end{aligned}$	Length Miles	Avg Ann Daily Traffic	Level of Service		Peak Hr Traffic Capacity					
					A to F3	1 to 9						
1	1.400	3.200	1.800	155,386	B	2	10,380					
2	3.200	4.100	0.900	164,297	C	3	10,380					
3	4.100	6.200	2.100	196,859	D	4	10,500					
4	6.200	9.800	3.600	184,987	E	5	8,400					
5	9.800	10.100	0.300	235,900	D	4	13,380					
6	10.100	13.300	3.200	103,378	C	3	6,600					
7	13.300	14.300	1.000	56,400	C	3	4,400					
8	14.300	14.900	0.600	44,300	B	2	4,400					
9	14.900	19.800	4.900	29,773	C	3	5,100					
10	19.800	24.800	5.000	10,699	B	2	4,411					
11	24.800	39.000	14.200	9,000	D	4	1,550					
Sum			37.600	1,190,979		35	79,501					
Estimating the Weighted Averages for SR 94												
Segment	Weight	AADT		Level of Service			Capacity					
1	4.8\%	7,439			0.096		497					
2	2.4\%	3,933			0.072		248					
3	5.6\%	10,995			0.223		586					
4	9.6\%	17,712			0.479		804					
5	0.8\%	1,882			0.032		107					
6	8.5\%	8,798			0.255		562					
7	2.7\%	1,500			0.080		117					
8	1.6\%	707			0.032		70					
9	13.0\%	3,880			0.391		665					
10	13.3\%	1,423			0.266		587					
11	37.8\%	3,399			1.511		585					
Sum	100.0\%	61,667		C	3.436		4,828					
$\begin{array}{ll}\text { Notes } & \text { LOS coding: } A=1, B=2, C=3, D=4, E=5, F 0=6, F 1=7, F 2=8, F 3=9 \\ \text { Source: } \quad \text { California BINSTechnical Committee representative }\end{array}$												

Table $4 f$
State Route 125 Data 2020

Table 4g
State Route 188 Data 2020

Within 100 km of the US-Mexico Border?					Y		
Serves an International POE?					Y		
Segment \#	Begin Post Mile	End Post Mile	$\begin{aligned} & \hline \text { Length } \\ & \text { Miles } \end{aligned}$	Avg Ann Daily Traffic	Level of Service		Peak Hr Traffic Capacity
					$\begin{aligned} & \text { A to } \\ & \text { F3 } \end{aligned}$	$\begin{aligned} & 1 \text { to } \\ & 9 \end{aligned}$	
1	0.000	0.100	0.100	10,900	B	2	2,400
2	0.100	0.600	0.500	10,900	B	2	2,400
3	0.600	1.900	1.300	21,000	C	3	2,400
Sum			1.900	42,800		7	7,200
Estimating the Weighted Averages for SR 188							
Segment	Weight	AADT		Level of	ice		Capacity
1	5.3\%	574			0.105		126
2	26.3\%	2,868			0.526		632
3	68.4\%	14,368			2.053		1,642
Sum	100.0\%	17,811		B	2.684		2,400
Notes LOS coding: $\mathrm{A}=1, \mathrm{~B}=2, \mathrm{C}=3, \mathrm{D}=4, \mathrm{E}=5, \mathrm{FO}=6, \mathrm{F1}=7, \mathrm{~F} 2=8, \mathrm{F3}=9$	LOS coding: $\mathrm{A}=1, \mathrm{~B}=2, \mathrm{C}=3, \mathrm{D}=4, \mathrm{E}=5, \mathrm{FO}=6, \mathrm{~F} 1=7, F 2=8, F 3=9$						
Source:	California BINSTechnical Committee representative						

Table 4h
Interstate 805 Data 2020

Within 100 km of the US-M exico Border?					Y		
Serves an International POE?					Y		
$\begin{aligned} & \text { Seg- } \\ & \text { ment } \\ & \# \end{aligned}$	Begin Post Mile	End Post Mile	Length Miles	Avg Ann Daily Traffic	Level of Service		Peak Hr Traffic Capacity
					$\begin{aligned} & \text { A to } \\ & \text { F3 } \end{aligned}$	$\begin{aligned} & 1 \text { to } \\ & 9 \end{aligned}$	
1	0.500	1.800	1.300	78,136	C	3	8,000
2	1.800	2.900	1.100	149,400	C	3	10,560
3	2.900	7.200	4.300	237,876	E	5	10,292
4	7.200	8.900	1.700	263,608	F2	8	8,600
5	8.900	13.500	4.600	238,907	FO	6	10,000
6	13.500	14.600	1.100	256,200	F2	8	8,600
7	14.600	17.600	3.000	240,345	F1	7	9,200
8	17.600	20.600	3.000	242,513	FO	6	10,000
9	20.600	23.700	3.100	230,171	FO	6	8,600
10	23.700	27.100	3.400	261,375	FO	6	9,200
11	27.100	28.500	1.400	220,800	F1	7	8,000
Sum			28.000	2,419,331		65	101,052
Estimating the Weighted Averages for 1-805							
Segment	Weight	AADT		Level of	vice		acity
1	4.6\%	3,628			0.139		
2	3.9\%	5,869			0.118		
3	15.4\%	36,531			0.768		
4	6.1\%	16,005			0.486		
5	16.4\%	39,249			0.986		
6	3.9\%	10,065			0.314		
7	10.7\%	25,751			0.750		
8	10.7\%	25,984			0.643		
9	11.1\%	25,483			0.664		
10	12.1\%	31,738			0.729		
11	5.0\%	11,040			0.350		
Sum	100.0\%	231,343		E	5.946		
Notes LOS coding: $\mathrm{A}=1, \mathrm{~B}=2, \mathrm{C}=3, \mathrm{D}=4, \mathrm{E}=5, \mathrm{~F}=6, \mathrm{~F} 1=7, \mathrm{~F} 2=8, \mathrm{F3}=9$							
Source:	California BINSTechnical Committee representative						

Table 4i
Interstate 905 Data 2020

Within 100 km of the US-Mexico Border?					Y		
Serves an International POE?					Y		
Segment \#	Begin Post Mile	End Post Mile	Length Miles	$\begin{array}{\|l} \hline \text { Avg Ann } \\ \text { Daily } \\ \text { Traffic } \end{array}$	Level of Service		Peak Hr Traffic Capacity
					$\begin{aligned} & \hline \text { A to } \\ & \text { F3 } \end{aligned}$	$\begin{aligned} & \hline 1 \text { to } \\ & 9 \end{aligned}$	
1	2.800	5.200	2.400	92,846	D	4	5,720
2	5.200	6.600	1.400	91,400	C	3	6,600
3	6.600	7.600	1.000	94,600	C	3	6,600
4	7.600	8.700	1.100	87,400	C	3	6,600
5	8.700	9.700	1.000	72,800	B	2	6,600
6	9.700	10.600	0.900	49,700	B	2	6,600
7	10.600	12.000	1.400	36,900	A	1	6,600
Sum			9.200	525,646		18	45,320
Estimating the Weighted Averages for I-905							
Segment	Weight	AADT		Level of	vice		acity
1	26.1\%	24,221			1.043		
2	15.2\%	13,909			0.457		
3	10.9\%	10,283			0.326		
4	12.0\%	10,450			0.359		
5	10.9\%	7,913			0.217		
6	9.8\%	4,862			0.196		
7	15.2\%	5,615			0.152		
Sum	100.0\%	77,252		B	2.750		
Notes LOS coding: $\mathrm{A}=1, \mathrm{~B}=2, \mathrm{C}=3, \mathrm{D}=4, \mathrm{E}=5, \mathrm{FO}=6, \mathrm{F1}=7, \mathrm{~F} 2=8, \mathrm{F3}=9$	LOS coding: $\mathrm{A}=1, \mathrm{~B}=2, \mathrm{C}=3, \mathrm{D}=4, \mathrm{E}=5, \mathrm{~F}=6, \mathrm{~F} 1=7, \mathrm{~F} 2=8, \mathrm{F3}=9$						
Source:	California BINSTechnical Committee representative						

IM PERIAL / MEXICALI CORRIDOR: CALENDAR YEAR 2000 DATA

Table 5a
Interstate 8 Data 2000

Within 100 km of the US-M exico Border?					Y		
Serves an International POE?					Y		
Segment \#	Begin Post Mile	$\begin{aligned} & \text { End } \\ & \text { Post } \\ & \text { Mile } \end{aligned}$	Length Miles	Avg Ann Daily Traffic	Level of Service		Peak Hr Traffic Capacity
					A to F3	$\begin{aligned} & 1 \text { to } \\ & 9 \end{aligned}$	
1							
2							
3							
4							
5							
6							
7							
8							
9							
10							
11							
12							
13							
14							
15							
16							
17	0.000	37.000	37.000	11,720	A	1	4,000
18	37.000	40.900	3.900	28,117	A	1	4,000
19	40.900	65.800	24.900	9,498	A	1	4,000
20	65.800	97.000	31.200	12,523	A	1	4,000
Sum			97.000	61,858		4	16,000

Estimating the Weighted Averages for I-8

Segment	Weight	AADT	Level of Service		Capacity
1					
2					
3					
4					
5					
6					
7			Level of Service		
Segment	Weight	AADT			
8					
9					
10					
11					

12					
13					
14					
15					
16				0.381	1,526
17	38.1%	4,471		0.040	161
18	4.0%	1,130		0.257	1,027
19	25.7%	2,438		0.322	1,287
20	32.2%	4,028		12,000	
Sum	100.0%	12,067			
Notes: LOS coding: $\mathrm{A}=1, \mathrm{~B}=2, \mathrm{C}=3, \mathrm{D}=4, \mathrm{E}=5, \mathrm{~F} 0=6, \mathrm{~F} 1=7, \mathrm{~F} 2=8, \mathrm{~F} 3=9$					
Source: California BINSTechnical Committee representative					

Table 5b
Interstate 10 Data 2000

Within 100 km of the US-M exico Border?					Y		
Serves an International POE?					Y		
Segment \#	Begin Post Mile	End Post Mile	Length Miles	Avg Ann Daily Traffic	Level of Service		Peak Hr Traffic Capacity
					A to F3	$\begin{aligned} & 1 \text { to } \\ & 9 \\ & \hline \end{aligned}$	
1							
2							
3							
4							
5							
6							
7							
8							
9							
10							
11	25.2	29.7	4.500	60,000	A	1	8,000
12	29.7	44.4	14.700	54,600	A	1	8,000
13	44.4	52.3	7.900	45,300	A	1	6,000
14	52.3	57.6	5.300	29,300	A	1	6,000
15	57.600	105.100	47.500	15,200	A	1	4,000
16	105.100	149.200	44.100	14,100	A	1	4,000
17	149.200	154.200	5.000	16,200	A	1	4,000
18	154.200	156.500	2.300	18,000	A	1	4,000
Sum			131.300	252,700		8	44,000
Estimating the Weighted Averages for I-10							
Segment	Weight	AADT		Level of Ser	ice		Capacity
(1)							
2							
3							
4							
5							
6							
7							
8							
9							
10							
11	3.4\%	2,056			0.034		274
12	11.2\%	6,113			0.112		896
13	6.0\%	2,726			0.060		361
14	4.0\%	1,183			0.040		242
15	36.2\%	5,499			0.362		1,447
16	33.6\%	4,736			0.336		1,343
17	3.8\%	617			0.038		152
18	1.8\%	315			0.018		70
Sum	100.0\%	23,244		A	1.000		4,786
Notes: LOS coding: $A=1, B=2, C=3, D=4, E=5, F 0=6, F 1=7, F 2=8, F 3=9$ Source: California BINSTechnical Committee representative							

Table 5c
State Route 7 Data 2000

Within 100 km of the US-Mexico Border?					Y			
Serves an International POE?					Y			
$\begin{aligned} & \text { Seg- } \\ & \text { ment } \end{aligned}$\\| \#	Begin Post Mile	$\begin{aligned} & \hline \text { End } \\ & \text { Post } \\ & \text { Mile } \end{aligned}$	Length Miles	Avg Ann Daily Traffic	Level of Service		Peak Hr Traffic Capacity	
					$\begin{aligned} & \text { A to } \\ & \text { F3 } \end{aligned}$	$\begin{array}{\|l} \hline 1 \text { to } \\ 9 \end{array}$		
1	0.000	1.200	1.200	9,700	B	2	2,400	
2	1.200	6.700	5.500					
Sum			1.200	9,700		2	2,400	
Estimating the Weighted Averages for SR 7								
Segment	Weight	AADT		Level of Service			Capacity	
1	100.0\%	9,700			2.000		2,400	
Sum	100.0\%	9,700		B	2.000		2,400	
Notes: LOS coding: $A=1, B=2, C=3, D=4, E=5, F 0=6, F 1=7, F 2=8, F 3=9$ Source: California BINSTechnical Committee representative								

Table 5d
State Route 78 Data 2000

Within 100 km of the US-M exico Border?					Y		
Serves an International POE?					Y		
Segment \#	Begin Post Mile	End Post Mile	Length Miles	Avg Ann Daily Traffic	Level of Service		Peak Hr Traffic Capacity
					A to F3	$\begin{aligned} & 1 \text { to } \\ & 9 \end{aligned}$	
1							
2							
3							
4							
5							
6							
7							
8							
9							
10							
11							
12							
13	0.000	13.200	13.200	700	B	2	2,000
14	13.200	13.800	0.600	19,064	B	2	2,000
15	13.800	15.000	1.200	14,747	B	2	2,400
16	15.000	18.700	3.700	3,400	B	2	2,000
17	18.700	21.000	2.300	3,100	B	2	2,000
Sum			21.000	41,011		10	10,400

Estimating the Weighted Averages for SR 78

Segment	Weight	AADT	Level of Service		Capacity
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					
11					
12					
13	62.9\%	440		1.257	1,257
14	2.9\%	545		0.057	57
15	5.7\%	843		0.114	137
16	17.6\%	599		0.352	352
17	11.0\%	340		0.219	219
Sum	100.0\%	2,766	B	2.000	2,023
Notes: LOS	coding: A	, B = 2, C	6, F	F3 $=9$	
Source:	nia BIN	nical Com			

Table 5e
State Route 86 Data 2000

Within 100 km of the US-M exico Border?					Y		
Serves an International POE?					Y		
Segment \#	Begin Post Mile	End Post Mile	Length Miles	Avg Ann Daily Traffic	Level of Service		Peak Hr Traffic Capacity
					A to F3	$\begin{aligned} & 1 \text { to } \\ & 9 \end{aligned}$	
1							
2							
3							
4							
5							
6							
7							
8	18.900	20.600	1.700	16,953	A	1	2,800
9	20.600	21.400	0.800	12,816	B	2	2,400
10	21.400	43.600	22.200	9,978	B	2	2,000
11	43.600	56.100	12.500	10,700	A	1	2,800
12	56.100	67.800	11.700	12,456	A	1	2,800
Sum			48.900	62,903		7	12,800
Estimating the Weighted Averages for SR 86							
Segment	Weight	AADT		Level of Servir	ice		Capacity
1							
2							
3							
4							
5							
6							
7							
8	3.5\%	589			0.035		97
9	1.6\%	210			0.033		39
10	45.4\%	4,530			0.908		908
11	25.6\%	2,735			0.256		716
12	23.9\%	2,980			0.239		670
Sum	100.0\%	11,044		A	1.470		2,430
Notes: LOS coding: $\mathrm{A}=1, \mathrm{~B}=2, \mathrm{C}=3, \mathrm{D}=4, \mathrm{E}=5, \mathrm{~F} 0=6, \mathrm{~F} 1=7, \mathrm{~F} 2=8, \mathrm{F3}=9$							
Source: California BINSTechnical Committee representative							

Table 5 f
State Route 98 Data 2000

Within 100 km of the US-M exico Border?					Y		
Serves an International POE?					Y		
Segment \#	Begin Post Mile	End Post Mile	Length Miles	Avg Ann Daily Traffic	Level of Service		Peak Hr Traffic Capacity
					A to F3	$\begin{aligned} & 1 \text { to } \\ & 9 \end{aligned}$	
1							
2							
3	30.300	32.300	2.000	17,424	C	3	2,000
4	32.300	32.900	0.600	19,023	B	2	2,400
5	32.900	39.600	6.700	11,421	B	2	2,000
6	39.600	42.100	2.500	2,800	B	2	2,000
Sum			11.800	50,668		9	8,400
Estimating the Weighted Averages for SR 98							
Segment	Weight	AADT		Level of Ser	ice		Capacity
1							
2							
3	16.9\%	2,953			0.508		339
4	5.1\%	967			0.102		122
5	56.8\%	6,485			1.136		1,136
6	21.2\%	593			0.424		424
Sum	100.0\%	10,999		B	2.169		2,020
Notes: LOS coding: $\mathrm{A}=1, \mathrm{~B}=2, \mathrm{C}=3, \mathrm{D}=4, \mathrm{E}=5, \mathrm{FO}=6, \mathrm{~F} 1=7, \mathrm{~F} 2=8, \mathrm{~F} 3=9$							

Table 5g
State Route 111 Data 2000

Within 100 km of the US-Mexico Border?					Y		
Serves an International POE?					Y		
Segment \#	Begin Post Mile	$\begin{aligned} & \hline \text { End } \\ & \text { Post } \\ & \text { Mile } \end{aligned}$	Length Miles	Avg Ann Daily Traffic	Level of Service		Peak Hr Traffic Capacity
					$\begin{aligned} & \text { A to } \\ & \text { F3 } \end{aligned}$	$\begin{aligned} & 1 \text { to } \\ & 9 \end{aligned}$	
1	0.000	1.200	1.200	34,064	D	4	2,000
2	1.200	4.700	3.500	29,700	A	1	2,800
3	4.700	7.700	3.000	29,356	B	2	2,800
4	7.700	22.100	14.400	8,611	B	2	2,000
5	22.100	22.600	0.500	9,940	B	2	2,000
6	22.600	32.500	9.900	6,844	B	2	2,000
Sum			32.500	118,515		13	13,600
Estimating the Weighted Averages for SR 111							
Segment	Weight	AADT		Level of Service			Capacity
1	3.7\%	1,258			0.148		74
2	10.8\%	3,198			0.108		302
3	9.2\%	2,710			0.185		258
4	44.3\%	3,815			0.886		886
5	1.5\%	153			0.031		31
6	30.5\%	2,085			0.609		609
Sum	100.0\%	13,219		A	1.966		2,160
Notes: LOS coding: $\mathrm{A}=1, \mathrm{~B}=2, \mathrm{C}=3, \mathrm{D}=4, \mathrm{E}=5, \mathrm{~F} 0=6, \mathrm{~F} 1=7, F 2=8, \mathrm{~F} 3=9$ Source: California BINSTechnical Committee representative							

Table 5h
State Route 115 Data 2000

Within 100 km of the US-Mexico Border?					Y		
Serves an International POE?					Y		
Segment \#	Begin Post Mile	$\begin{aligned} & \hline \text { End } \\ & \text { Post } \\ & \text { Mile } \end{aligned}$	Length Miles	Avg Ann Daily Traffic	Level of Service		Peak Hr Traffic Capacity
					$\begin{aligned} & \text { A to } \\ & \text { F3 } \end{aligned}$	$\begin{aligned} & 1 \text { to } \\ & 9 \end{aligned}$	
1	3.200	9.300	6.100	1,717	B	2	2,000
2	9.300	9.800	0.500	6,129	B	2	2,400
3	9.800	11.400	1.600	6,505	B	2	2,000
4	11.400	21.200	9.800	2,700	B	2	2,000
5	21.200	31.600	10.400	1,739	B	2	2,000
6	31.600	35.200	3.600	2,449	B	2	2,400
Sum			32.000	21,239		12	12,800
Estimating the Weighted Averages for SR 115							
Segment	Weight	AADT		Level of Service		Capacity	
1	19.1\%	327			0.381		381
2	1.6\%	96			0.031		38
3	5.0\%	325			0.100		100
4	30.6\%	827			0.613		613
5	32.5\%	565			0.650		650
6	11.3\%	276			0.225		270
Sum	100.0\%	2,416		B	2.000		2,051
Notes: LOS coding: $\mathrm{A}=1, \mathrm{~B}=2, \mathrm{C}=3, \mathrm{D}=4, \mathrm{E}=5, \mathrm{FO}=6, \mathrm{~F} 1=7, \mathrm{~F} 2=8, \mathrm{~F} 3=9$ Source: California BINSTechnical Committee representative							

Table 5i
State Route 186 Data 2000

Within 100 km of the US-M exico Border?					Y		
Serves an International POE?					Y		
Segment \#	Begin Post Mile	End Post Mile	Length Miles	Avg Ann Daily Traffic	Level of Service		Peak Hr Traffic Capacity
					A to F3	$\begin{aligned} & 1 \text { to } \\ & 9 \end{aligned}$	
1	0.000	2.100	2.100	7,300	B	2	2,000
Sum			2.100	7,300		2	2,000
Estimating the Weighted Averages for SR 186							
Segment	Weight	AADT		Level of Ser			Capacity
1	100.0\%	7,300			2.000		2,000
Sum	100.0\%	7,300		B	2.000		2,000
Notes: LOS coding: $\mathrm{A}=1, \mathrm{~B}=2, \mathrm{C}=3, \mathrm{D}=4, \mathrm{E}=5, \mathrm{FO}=6, \mathrm{~F} 1=7, \mathrm{~F} 2=8, \mathrm{~F} 3=9$							
Source: California BINSTechnical Committee representative							

IM PERIAL / MEXICALI CORRIDOR: CALENDAR YEAR 2020 DATA

Table 6a
Interstate 8 Data 2020

Within 100 km of the US-M exico Border?					Y		
Serves an International POE?					Y		
Segment \#	Begin Post Mile	End Post Mile	Length Miles	Avg Ann Daily Traffic	Level of Service		Peak Hr Traffic Capacity
					A to F3	$\begin{aligned} & 1 \text { to } \\ & 9 \end{aligned}$	
1							
2							
3							
4							
5							
6							
7							
8							
9							
10							
11							
12							
13							
14							
15							
16							
17	0.000	37.000	37.000	18,211	A	1	4,000
18	37.000	40.900	3.900	34,231	A	1	4,000
19	40.900	65.800	24.900	10,696	A	1	4,000
20	65.800	97.000	31.200	22,108	A	1	4,000
Sum			97.000	85,246		4	16,000

Estimating the Weighted Averages for I-8

Segment	Weight	AADT	Level of Service		Capacity
1					
2					
3					
4					
5					
6					
7					
8					
9					
Segment	Weight	AADT			
10					
11					
12					
13					

14					
15					
16					
17	38.1%	6,946		0.381	1,526
18	4.0%	1,376		0.040	161
19	25.7%	2,746		0.257	1,027
20	32.2%	7,111		0.322	1,287
Sum	100.0%	18,179	A	1.000	4,000

Notes: LOS coding: $A=1, B=2, C=3, D=4, E=5, F 0=6, F 1=7, F 2=8, F 3=9$

Source: California BINSTechnical Committee representative

Table 6b
Interstate 10 Data 2020

Within 100 km of the US-M exico Border?					Y		
Serves an International POE?					Y		
Segment \#	Begin Post Mile	End Post Mile	Length Miles	Avg Ann Daily Traffic	Level of Service		Peak Hr Traffic Capacity
					A to F3	1 to 9	
1							
2							
3							
4							
5							
6							
7							
8							
9							
10							
11	25.2	29.7	4.500	86,900	B	2	8,000
12	29.7	44.4	14.700	143,100	E	5	8,000
13	44.4	52.3	7.900	161,700	F0	6	8,000
14	52.3	57.6	5.300	118,900	D	4	6,000
15	57.600	105.100	47.500	38,500	B	2	4,000
16	105.100	149.200	44.100	32,000	A	1	4,000
17	149.200	154.200	5.000	35,000	A	1	4,000
18	154.200	156.500	2.300	35,000	A	1	4,000
Sum			131.300	651,100		22	46,000

Estimating the Weighted Averages for I-10

Segment	Weight	AADT	Level of Service		Capacity
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					
11	3.4\%	2,978		0.069	274
12	11.2\%	16,021		0.560	896
13	6.0\%	9,729		0.361	481
14	4.0\%	4,799		0.161	242
15	36.2\%	13,928		0.724	1,447
16	33.6\%	10,748		0.336	1,343
17	3.8\%	1,333		0.038	152
18	1.8\%	613		0.018	70
Sum	100.0\%	60,150	B	2.266	4,906
Notes: LOS	ding: A	B $=2$, C		F $=9$	

Source: California BINSTechnical Committee representative

Table 6c
State Route 7 Data 2020

Within 100 km of the US-Mexico Border?					Y		
Serves an International POE?					Y		
Segment \#	Begin Post Mile	End Post Mile	Length Miles	Avg Ann Daily Traffic	Level of Service		Peak Hr Traffic Capacity
					A to	$\begin{aligned} & 1 \text { to } \\ & 9 \end{aligned}$	
1	0.000	1.200	1.200	39,200	E	5	2,400
2	1.200	6.700	5.500	23,800	C	3	2,400
Sum			6.700	63,000		8	4,800
Estimating the Weighted Averages for SR 7							
Segment	Weight	AADT		Level of Ser	vice		Capacity
1	17.9\%	7,021			0.896		430
2	82.1\%	19,537			2.463		1,970
Sum	100.0\%	26,558		C	3.358		2,400
Notes: LOS coding: $\mathrm{A}=1, \mathrm{~B}=2, \mathrm{C}=3, \mathrm{D}=4, \mathrm{E}=5, \mathrm{~F} 0=6, \mathrm{~F} 1=7, \mathrm{~F} 2=8, \mathrm{~F} 3=9$							
Source: California BINSTechnical Committee representative							

Table 6d
State Route 78 Data 2020

Within 100 km of the US-M exico Border?					Y		
Serves an International POE?					Y		
Segment \#	Begin Post Mile	End Post Mile	Length Miles	Avg Ann Daily Traffic	Level of Service		Peak Hr Traffic Capacity
					A to F3	1 to 9	
1							
2							
3							
4							
5							
6							
7							
8							
9							
10							
11							
12							
13	0.000	13.200	13.200	1,700	B	2	2,000
14	13.200	13.800	0.600	15,000	A	1	2,800
15	13.800	15.000	1.200	21,000	A	1	2,800
16	15.000	18.700	3.700	5,500	B	2	2,000
17	18.700	21.000	2.300	5,500	B	2	2,000
Sum			21.000	48,700		8	11,600

Estimating the Weighted Averages for SR 78

Segment	Weight	AADT	Level of Service		Capacity
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					
11					
12					
13	62.9\%	1,069		1.257	1,257
14	2.9\%	429		0.029	80
15	5.7\%	1,200		0.057	160
16	17.6\%	969		0.352	352
17	11.0\%	602		0.219	219
Sum	100.0\%	4,269	A	1.914	2,069
Notes: Source:	coding: ornia BINS	$\begin{aligned} & \text { 1, B=2, C } \\ & \text { echnical CC } \end{aligned}$	ive	$F 3=9$	

Table 6e
State Route 86 Data 2020

Within 100 km of the US-M exico Border?					Y		
Serves an International POE?					Y		
Segment \#	Begin Post Mile	End Post Mile	Length Miles	Avg Ann Daily Traffic	Level of Service		Peak Hr Traffic Capacity
					A to F3	$\begin{aligned} & 1 \text { to } \\ & 9 \end{aligned}$	
1							
2							
3							
4							
5							
6							
7							
8	18.900	20.600	1.700	23,000	A	1	2,600
9	20.600	21.400	0.800	20,400	B	2	2,400
10	21.400	43.600	22.200	17,000	B	2	2,400
11	43.600	56.100	12.500	16,000	B	2	2,400
12	56.100	67.800	11.700	19,164	A	1	2,800
Sum			48.900	95,564		8	12,600
Estimating the Weighted Averages for SR 86							
Segment	Weight	AADT		Level of Servir			Capacity
1							
2							
3							
4							
5							
6							
7							
8	3.5\%	800			0.035		90
9	1.6\%	334			0.033		39
10	45.4\%	7,718			0.908		1,090
11	25.6\%	4,090			0.511		613
12	23.9\%	4,585			0.239		670
Sum	100.0\%	17,526		A	1.726		2,503
Notes: LOS coding: $A=1, B=2, C=3, D=4, E=5, F 0=6, F 1=7, F 2=8, F 3=9$							
Source: California BINSTechnical Committee representative							

Table $6 f$
State Route 98 Data 2020

Table 6g
State Route 111 Data 2020

Table 6h
State Route 115 Data 2020

Table 6i
State Route 186 Data 2020

Within 100 km of the US-M exico Border?					Y		
Serves an International POE?					Y		
Seg- ment \#	Begin Post Mile	End Post Mile	Length Miles	Avg Ann Daily Traffic	$\begin{aligned} & \hline \text { Leve } \\ & \hline \text { A to } \\ & \text { F3 } \end{aligned}$	1 to 9	Peak Hr Traffic Capacity
1	0.000	2.100	2.100	10,000	C	3	2,400
Sum			2.100	10,000		3	2,400
Estimating the Weighted Averages for SR 186							
Segment	Weight	AADT		Level of Service			Capacity
1	100.0\%	10,000			3.000		2,400
Sum	100.0\%	10,000		C	3.000		2,400

Source: California BINSTechnical Committee representative

LEVEL OF SERVICE LOOK UP TABLE

This table has two purposes:

1. The first purpose is to assign numbers to LOS letters. The LOS is provided by the State and is in the form of a letter, such as A, B, C, etc. These letters are converted to numbers using the following scheme: $A=1, B=2, C=3, D=4, E=5, F 0=6, F 1=7, F 2=8, F 3=9$.
2. The second purpose is to convert average LOS calculations to letters. This occurs after the weighted average is computed for a highway and for a corridor. The letters associated with the ranges are the following: $A=1.000$ to 1.999; $B=2.000$ to $2.999 ; \mathrm{C}=3.000$ to 3.999 ; $\mathrm{D}=$ 4.000 to $4.999 ; E=5.000$ to $5.999 ; F 0=6.000$ to $6.999 ; F 1=7.000$ to $7.999 ; F 2=8.000$ to 8.999; F3 = 9.000

Table 7
Level of Service Look Up Table

LOS		Number
	A	1
	B	2
	C	3
	D	4
	E	5
	FO	6
	F1	7
	F2	8
	F3	9
Note:	Thistable has two purposes:	
	1. The first purpose is to assign numbers to LOS letters. The LOS is provided by the State and is in the form of a letter, such as A, B, C, etc. These letters are converted to numbers using the following scheme:$A=1, B=2, C=3, D=4, E=5, F 0=6, F 1=7, F 2=8, F 3=9$	
	2. The second purpose is to convert average LOS calculations to letters. This occurs after the weighted average is computed for a highway and for a corridor. The letters associated with the ranges are the following: A $=1.000$ to 1.999	
	$\mathrm{B}=2.000$ to 2.999	
	C $=3.000$ to 3.999	
	D $=4.000$ to 4.999	
	$\mathrm{E}=5.000$ to 5.999	
	F0 $=6.000$ to 6.999	
	F1 $=7.000$ to 7.999	
	F2 $=8.000$ to 8.999	
	$F 3=9.000$	

CORRIDOR EVALUATION CHIHUAHUA RESULTS AND DATA

Corridor evaluations are conducted to determine the corridors with the greater needs. This corridor evaluation uses quantifiable data with a systematic method to evaluate transportation corridors. Corridors are combinations of modes that move people, vehicles and goods from one location to another. To facilitate the evaluation process, the computations are calculated in formulas contained in the spreadsheets that will be sent to each of the states. Each evaluation spreadsheet is tailored to each state, thus each state's evaluation spreadsheet contains unique data - even though the methodology is the same. It is envisioned that each state will use its spreadsheet to conduct corridor evaluations, at its discretion.

Overall, the evaluation is conducted by compiling data, allocating the data to corridors and comparing corridors [within a state] to one another. There are 16 indicators 1 for which we compile data for each corridor. The overall evaluation uses two broad categories of data:

1. Historical Data - data for 16 indicators for the year 2000.
2. Change Data - a combination of actual changes for the 16 indicators from 2000 to 2020 and percent changes for the same 16 indicators from 2000 to 2020.

Conducting the evaluations is based on the ordering of data from highest to lowest to determine need. For example, assume there are three corridors in a state and the Average Annual Daily Traffic [AADT] in Corridor A is 157,000, the AADT for Corridor B is 450,000 and the AADT for Corridor C is 30,000. In this example, Corridor B is listed first because it has the highest AADT [450,000], its evaluation results are one, and it has the highest need. Corridor A is listed second because its AADT is 157,000 [second highest], its evaluation results are two, and it has the second highest need. Corridor C is listed third because it has the lowest AADT [30,000], its evaluation results are three and it has the lowest need. This process is repeated for all 16 indicators with data for calendar year 2000, for all 16 indicators for the change in the data between 2000 and 2020, and all 16 indicators for the percent change in the data between 2000 and 2020. There are a total of 48 evaluations compiled if all the data are present.

Higher values for the indicators represent more traffic (AADT), more congestion (LOS), more trade (dollar value of air, maritime, rail and truck cargo across POEs), more vehicles (number of passenger vehicles, trucks, buses, and rail cars across a POE), which point to both the relative importance of the corridor and its infrastructure needs. The highest value is given "first place" or a score of one and represents the highest need.

[^16]The evaluation results are summed by mode. For example, there are four indicators for highways AADT, the highway length [in miles], the level of service [LOS] and the highway capacity at peak hours. If a corridor was listed first for each indicator, its highway score would be a four [a score of one for each indicator]. This is done for Land Ports of Entry [POE - five indicators], airports [one indicator], maritime ports [two indicators] and railroads [four indicators]. The lower the score, the higher the listing. It follows that the lowest mode score represents the corridor with the greatest need for that mode.

The overall score for each corridor is then calculated by summing the five modes scores [one each for highways, POE, airports, maritime ports and railroads]. The corridor with the lowest overall score is listed first and has the highest overall need. The corridor with the second lowest overall score is listed second and has the second highest need. The corridor with the highest overall score is listed third and has the lowest overall need.

Recall there is one historical component and there are two change components (change in absolute terms and percent change). Without any adjustments, the change component has twice the impact on the final result as the historical data. It was decided that the historical values are as important as the projected changes. To accomplish equal weighting, the historical scores are multiplied by two.

GENERAL DESCRIPTION OF CHIHUAHUA'S CORRIDORS

Corridors

Chihuahua has identified six corridors for the evaluation and each corridor represents a portion of a highway. The corridor names, an identification letters [A to F], and the highway number or title are contained in Table 6. Most tables contain the highway name and identification letter.

Highways

The highways specified in this evaluation are the $M X-2, M X-10, ~ M X-16$ and $M X-45$. Two unnumbered roads titled the Jeronimo-Samaluyuca-Chihuahua highway and the Guadalupe Samaluyuca-Chihuahua highway are also specified.

Land Ports of Entry [POE]

There are ten land POEs in Chihuahua: El Berrendo, Gral. Rodrigo M. Quevedo (Palomas), Jeronimo, Paso del Norte (Santa Fe-Juarez), Buen Vecino (Puente Lerdo), Cordova, Zaragoza, Guadalupe Bravo, El Porvenir and Ojinaga. In calendar year 2000, about 707,000 trucks crossed the Mexico-US border traveling south into Chihuahua through six land POEs Also in calendar year 2000, about 17.8 million passenger vehicles and buses crossed the Mexico-US border into Chihuahua through all ten land POEs.

Airports

There are two airports that meet the minimum corridor evaluation criteria [located within 100 km of the Mexico-US border and designated as an international port of entry]. During calendar year 2000, airplanes arriving and departing at the Chihuahua and Juarez airports transported about 1,880 tons of goods.

Railroads

No rail data is included in the corridor evaluation because the BINS Technical representative did not provide rail crossing data for Chihuahua. There are two rail lines that cross the US-Mexico border in Chihuahua.

Maritime Ports

Chihuahua has no maritime ports and no plans to construct a maritime port between now and 2020.

Source: Chihuahua BINSTechnical Committee representative.

ANALYSIS OF CORRIDOR EVALUATION RESULTS

The Mexico-Ciudad Juarez Corridor obtains its first place listing by virtue of the fact it is listed first with respect to the historical data and listed first with respect to the change data.

Historical Data

This discussion reviews highway, land POE and airport data and results. No maritime port or rail data is included in the evaluation because Chihuahua does not have a maritime port and there is not a rail line that crosses the Mexico-US border in Chihuahua. With regard to the highways, the Mexico-Ciudad Juarez Corridor is listed first because it is listed first in three of the four highway categories - AADT, highway length and capacity. This corridor dominates the AADT listing with 6,937 - this is twice as large as the corridor listed second [Ojinaga-Chihuahua] and 17 times larger than the corridor listed sixth 】eronimo-Samalayuca-Chihuahua]. The highway length of the \#1 corridor is about 26% longer than the second place corridor [580 km vs. 508 km] and its capacity is significantly greater than the other corridors. The El Berrendo corridor is the only other corridor with a \#l listing - it is listed \#1 in LOS where it is rated a " B ".

For truck, passenger vehicles and airport data, the Mexico-Ciudad Juarez Corridor is always listed first by virtue of the fact that the data are allocated by the distribution of AADT amongst six Corridors and Mexico-Ciudad Juarez has the largest AADT total of the six corridors.

Change Data

This discussion reviews highway, land POE and airport data for both absolute changes and percent changes. With regard to absolute changes, the Mexico-Ciudad Juarez Corridor dominates the highways mode being listed first for two indicators [AADT and LOS] and tied for first for the other two indicators [highway length and capacity - there was no change in capacity or highway length for any of the six corridors].

For truck, passenger vehicles and buses, and airport data, the Mexico-Ciudad Juarez Corridor is always listed first by virtue of the fact that it had the largest data in 2000, while the growth rates for each mode is the same for all six of the corridors.

With regard to percent changes in highway data, the Jeronimo-Samalayuca-Chihuahua Corridor is listed first with respect to AADT with a growth rate of 82.5%. The other five corridors experienced a growth rate of 65.3%. For LOS, the Mexico-Ciudad Juarez Corridor is listed first with an increase of 168% as its LOS fell from A to B. Regarding highway length and capacity, all of the Corridors are tied for first with no change.

For trucks, passenger vehicles and buses, and airports, all six of the corridors are tied for first by virtue of the fact that each corridor has the same growth rate for each mode [[80.6\% for trucks, 65.8% for passenger vehicles and buses, and 80.6% for airports.

Table 1
Summary Corridor Results

	Corridor Scores						Evaluation Results					
Corridor Identification:	A	B	C	D	E	F	A	B	C	D	E	F
Corridor Names:	Ciudad JuarezTijuana	El Berrendo-Janos-SuecoChihuahua	OjinagaChihuahua	MexicoCiudad Juarez	Jeronimo-SamalayucaChihuahua	Guadalupe-SamalayucaChihuahua						
Historical Scores for 2000 Data 1												
Highways	28	30	18	14	38	34	3	4	2	1	6	5
Land Ports of Entry	12	16	8	4	24	20	3	4	2	1	6	5
Airports	4	8	6	2	12	10	2	4	3	1	6	5
Maritime Ports ${ }^{2}$												
Railroads ${ }^{3}$												
Sum of Historical Scores:	44	54	32	20	74	64	3	4	2	1	6	5
Changes Scores For Changes Betw een 2000 and 20204												
Highways	14	18	18	9	23	16	2	5	5	1	6	3
Land Ports of Entry	8	10	6	4	14	12	3	4	2	1	6	5
Airports	4	5	3	2	7	6	3	4	2	1	6	5
Maritime Ports ${ }^{2}$												
Railroads ${ }^{3}$												
Sum of Changes Scores:	26	33	27	15	44	34	2	4	3	1	6	5
Overall Scores ${ }^{5}$:	70	87	59	35	118	98						
Overall Result:	3	4	2	1	6	5						
Notes: 1 Historical Scores from T 2 Chihuahua has no marit 3 The BINSTechnical repr 4 The Changes Scores is t 5 The Overall Score is the scores are equally weig Lower score represents great	able 1. To in me ports esentative p e sum of th sum of the ted. need.	sure equal weig rovided no dat Corridor Scor Historical Score	ting with the on railroad cro from Table 4 [nd the Change	anges scores sings. There Corridor Chan Score. The H	s, the Historical co are two rail lines ges] and Corridor istorical Data scor	idor scores are m hat cross the Mex Scores Table 5 [Co s and the Change					hua.	

Table 2
Corridor Data For 2000

Corridor Identification:	A	B	C	D	E	F	A	B	C	D	E	F
Corridor Names:	Ciudad Juarez- Tijuana	El Berrendo-Janos-SuecoChihuahua	OjinagaChihuahua	MexicoCiudad Juarez	Jeronimo-SamalayucaChihuahua	Guadalupe-SamalayucaChihuahua						
Highways												
Average Annual Daily Traffic	2,326	2,258	2,625	6,937	400	1,500	3	4	2	1	6	5
Highway Length [in km]	287.4	270.5	508.8	579.8	28.5	34.7	3	4	2	1	6	5
LOS[A =1 to F3 = 9]	1.7	2.9	1.7	1.0	1.0	1.0	3	1	3	4	4	4
Capacity at Peak Hour	2,040	1,393	2,366	6,715	2,200	2,200	5	6	2	1	3	3
						Highway Scores:	14	15	9	7	19	17
						Overall Highway Result:	3	4	2	1	6	5
Land Port of Entry Border	ossings											
Number trucks	102,531	99,523	115,695	305,796	17,632	66,121	3	4	2	1	6	5
Total volume [tons]												
\#passenger veh. \& buses	2,584,688	2,508,855	2,916,543	7,708,758	444,486	1,666,824	3	4	2	1	6	5
						POE Scores:	6	8	4	2	12	10
						Overall POE Result:	2	4	3	1	6	5
Airports												
Total volume [tons]	273	265	308	813	47	176	3	4	2	1	6	5
						Airport Scores:	3	4	2	1	6	5
						Overall Airport Result:	2	4	3	1	6	5
M aritime Ports ${ }^{1}$												
Total volume [tons]												
Total number TEUs												
						Maritime Port Scores:						
						Overall Maritime Result:						
Corridor Identification:	A	B	C	D	E	F	A	B	C	D	E	F

Table 3
Corridor Data And Results For 2020

Corridor Identification:	A	B	C	D	E	F	A	B	C	D	E	F
Corridor Names:	Ciudad JuarezTijuana	El Berrendo-Janos-Sueco- Chihuahua	OjinagaChihuahua	MexicoCiudad Juarez	Jeronimo-SamalayucaChihuahua	Guadalupe-SamalayucaChihuahua						
Highways												
Average Annual Daily Traffic	3,845	3,732	4,338	11,466	730	2,480	3	4	2	1	6	5
Highway Length [in km]	287.4	270.5	508.8	579.8	28.5	34.7	3	4	2	1	6	5
LOS[A=1 to F3 = 9]	3.0	3.9	1.9	2.7	1.0	2.0	2	1	5	3	6	4
Capacity at Peak Hour	2,040	1,393	2,366	6,715	2,200	2,200	5	6	2	1	3	3
						Highway Scores:	13	15	11	6	21	17
						Overall Highway Result:	2	4	2	1	6	5
Land Port of Entry Border	ossings											
Number trucks	184,716	179,274	208,407	550,843	35,070	119,141	3	4	2	1	6	5
Total volume [tons]												
\#passenger veh. \& buses	4,274,775	4,148,833	4,823,027	12,747,812	811,596	2,757,202	3	4	2	1	6	5
						POE Scores:	6	8	4	2	12	10
						Overall POE Result:	2	4	3	1	6	5
Airports												
Total volume [tons]	491	477	554	1,464	93	317	3	4	2	1	6	5
						Airport Scores:	3	4	2	1	6	5
						Overall Airport Result:	2	4	3	1	6	5
M aritime Ports ${ }^{1}$												
Total volume [tons]												
Total number TEUs												
						Maritime Port Scores:						
						Overall Maritime Result:						

Table 4
Corridor Changes, 2000-2020

Corridor Identification:	A	B	C	D	E	F	A	B	C	D	E	F
Corridor Names:	Ciudad JuarezTijuana	El Berrendo-Janos-SuecoChihuahua	OjinagaChihuahua	MexicoCiudad Juarez	Jeronimo-SamalayucaChihuahua	Guadalupe-SamalayucaChihuahua						
Highways												
Average Annual Daily Traffic	1,519	1,474	1,713	4,529	330	980	3	4	2	1	6	5
Highway Length [in km]	0.0	0.0	0.0	0.0	0.0	0.0	1	1	1	1	1	1
LOS[A=1 to F3 = 9]	1.300	0.950	0.171	1.676	0.000	1.000	2	4	5	1	6	3
Capacity at Peak Hour	0	0	0	0	0	0	1	1	1	1	1	1
						Highway Scores:	7	10	9	4	14	10
						Overall Highway Result:	2	2	5	1	6	4
Land Port of Entry Border	ossings											
Number trucks	82,127	79,692	92,642	244,864	17,842	52,985	3	4	2	1	6	5
Total volume [tons]												
\#passenger veh. \& buses	1,690,078	1,639,970	1,906,474	5,039,028	367,166	1,090,373	3	4	2	1	6	5
						POE Scores:	6	8	4	2	12	10
						Overall POE Result:	2	4	3	1	6	5
Airports												
Total volume [tons]	218	212	246	651	47	141	3	4	2	1	6	5
						Airport Scores:	3	4	2	1	6	5
						Overall Airport Result:	2	4	3	1	6	5
Maritime Ports ${ }^{1}$												
Total volume [tons]												
Total number TEUs												
						M aritime Port Scores:						
						Overall Maritime Result:						

Corridor Identification:	A	B	C	D	E	F	A	B	C	D	E	F
Corridor Names:	Ciudad JuarezTijuana	El Berrendo-Janos-SuecoChihuahua	OjinagaChihuahua	MexicoCiudad Juarez	Jeronimo-SamalayucaChihuahua	Guadalupe-SamalayucaChihuahua						
Railroads Border Crossing at POE^{2}												
Number rail cars												
Total volume [tons]												
						Railroad Scores:						
						Overall Railroad Result:						
Total AADT in six Corridors	Share of AADT Among Corridors											
10,545	14.4\%	14.0\%	16.2\%	42.9\%	3.1\%	9.3\%						
Notes: POE and Airport data are assigned to Corridors based on AADT distribution. $1 \quad$ Chihuahua has no maritime ports. 2 The BINSTechnical representative provided no data on railroad crossings. There are two rail lines that cross the Mexico-US border in Chihuahua Differences are estimated by subtracting the year 2000 data from the 2020 projections. See Tables 6-9 for details. Lower Score representsgreater need.												

Table 5
Corridor Percent Changes, 2000-2020

Corridor Identification:	A	B	C	D	E	F	A	B	C	D	E	F
Corridor Names:	Ciudad JuarezTijuana	El Berrendo-Janos-SuecoChihuahua	OjinagaChihuahua	MexicoCiudad Juarez	Jeronimo-SamalayucaChihuahua	Guadalupe-SamalayucaChihuahua						
Highways												
Average Annual Daily Traffic	65.3\%	65.3\%	65.3\%	65.3\%	82.5\%	65.3\%	2	2	2	2	1	2
Highway Length [in km]	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	1	1	1	1	1	1
LOS [A = 1 to F3 =9]	76.5\%	32.8\%	10.2\%	167.6\%	0.0\%	100.0\%	3	4	5	1	6	2
Capacity at Peak Hour	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	1	1	1	1	1	1
						Highway Scores:	7	8	9	5	9	6
						Overall Highway Result:	3	4	5	1	5	2
Land Port of Entry Border	ossings											
Number trucks	80.6\%	80.6\%	80.6\%	80.6\%	80.6\%	80.6\%	1	1	1	1	1	1
Total volume [tons]												
\# passenger veh. \& buses	65.8\%	65.8\%	65.8\%	65.8\%	65.8\%	65.8\%	1	1	1	1	1	1
						POE Scores:	2	2	2	2	2	2
						Overall POE Result:	1	1	1	1	1	1
Airports												
Total volume [tons]	80.6\%	80.6\%	80.6\%	80.6\%	80.6\%	80.6\%	1	1	1	1	1	1
						Airport Scores:	1	1	1	1	1	1
						Overall Airport Result	1	1	1	1	1	1
M aritime Ports ${ }^{1}$												
Total volume [tons]												
Total number TEUs												
						M aritime Port Scores:						
						Overall Maritime Result:						

Corridor Identification:	A	B	C	D	E	F	A	B	C	D	E	F
Corridor Names:	Ciudad Juarez- Tijuana	El Berrendo-Janos-SuecoChihuahua	OjinagaChihuahua	MexicoCiudad Juarez	Jeronimo-SamalayucaChihuahua	Guadalupe-SamalayucaChihuahua						
Railroads Border Crossing at POE^{2}												
Number rail cars												
Total volume [tons]												
						Railroad Scores:						
						Overall Railroad Result:						
Notes: See Tables 6-9 for details. 1 Chihuahua has no maritime ports. 2 The BINSTechnical representative provided no data on railroad crossings. There are two rail lines that cross the Mexico-US border in Chihuahua. Lower score represents greater need.												

Table 6
Highway Data

$\begin{array}{\|c\|} \hline \text { Corridor } \\ \text { ID } \end{array}$	Highway	Corridor Name	$\begin{gathered} \mathrm{km} \\ \text { Highway } \\ \text { Length } \end{gathered}$		$\begin{gathered} \hline \text { Level of Service - } \\ \text { LOS } \\ \hline \end{gathered}$		TrafficCarrying Capacity
					$\begin{gathered} \text { A to } \\ \text { F3 } \end{gathered}$	$\begin{gathered} \hline 1 \text { to } \\ 9 \end{gathered}$	
Historical Data for Calendar Year 2000							
A	MX-2	Cd Juarez Tijuana	287.40	2,326	A	1.7	2,040
B	MX-10	El Berrendo-Janos-SuecoChihuahua	270.50	2,258	B	2.9	1,393
C	MX-16	Ojinaga-Chinuahua	508.80	2,625	A	1.7	2,366
D	MX-45	Mexico-Cd Juarez	579.78	6,937	A	1.0	6,715
E	$\begin{gathered} \text { Santa } \\ \text { Teresa-Sam } \\ \hline \end{gathered}$	Jeronimo-Samalayuca-Chihuahua	28.50	400	A	1.0	2,200
F	$\begin{aligned} & \text { Guadaloupe- } \\ & \text { Sam } \end{aligned}$	Guadalupe-SamalayucaChihuahua	34.70	1,500	A	1.0	2,200
Projections for 2020							
A	MX-2	Cd Juarez Tijuana	287.40	3,845	C	3.0	2,040
B	MX-10	El Berrendo-Janos-SuecoChihuahua	270.50	3,732	C	3.9	1,393
C	MX-16	Ojinaga-Chihuahua	508.80	4,338	A	1.9	2,366
D	MX-45	Mexico-Cd Juarez	579.78	11,466	B	2.7	6,715
E	$\begin{gathered} \text { Santa } \\ \text { Teresa-Sam } \\ \hline \end{gathered}$	Jeronimo-Samalayuca-Chihuahua	28.50	730	A	1.0	2,200
F	GuadalupeSam	Guadalupe-SamalayucaChihuahua	34.70	2,480	B	2.0	2,200
LOS coding: $\mathrm{A}=1, \mathrm{~B}=2, \mathrm{C}=3, \mathrm{D}=4, \mathrm{E}=5, \mathrm{~F} 0=6, \mathrm{~F} 1=7, F 2=8, F 3=9$ Source: Chihuahua BINSTechnical Committee Representative							

Table 7
Land Ports of Entry [POE] Crossing Data

	El Berrendo	Palomas	Jeronimo	Santa Fe Juárez	Puente Lerdo	Cordova	Zaragoza	Guadalupe	El Porvenir	Ojinaga	Total
Federal inspection facilities at POE?	Yes										
Southbound POE Crossing Data for 2000^{1}											
Number trucks	0	4,366	29,820	0	0	334,918	330,982	108	0	7,104	707,298
Tons of goods											0
Value [Millions \$] moved by truck											\$0.0
Number of passenger vehicles	2,106	367,100	204,799	4,631,951	165,674	7,019,100	3,936,433	553,338	177,481	760,809	17,818,791
Number of buses	153	282	32	1,888	0	8,415	263	0	0	331	11,364
Number passenger vehicles \& buses											17,830,155
Number of rail cars											X
Volume of tons moved by rail											X
Number of TEUs moved by rail											X
```Value [Millions $] moved by rail```											X
Southbound POE Crossing Data for $2020^{2}$											
Number trucks											1,277,451
Tons of goods											
Value [Millions \$] moved by truck											
Number of passenger vehicles											X
Number of buses											X
Number passenger vehicles \& buses											29,563,244
Number of rail cars											X
Volume of tons moved by rail											X
Number of TEUs moved by rail											X



## Notes

Number of trucks = southbound trucks that cross the Mexico-US border
Tons of goods = carried by southbound trucks that cross the Mexico-USborder.
Value [Millions \$] moved by truck = value of goods moved by southbound trucks that cross the Mexico-US border.
Number of passenger vehicles = southbound passenger vehides that cross the Mexico-US border.
Number of buses = southbound buses that cross the M exico-US border.
Number passenger vehicles \& buses = sum of southbound passenger vehicles and buses that cross the Mexico-USborder.
Number of rail cars = southbound rail cars that cross the Mexico-USborder.
Volume of tons moved by rail =transported by the southbound rail cars that cross the Mexico-USborder.
Number of TEUs moved by rail =Twenty foot Equivalent containers[TEUs] moved by rail that are southbound and cross Mexico-US border.
Value [Millions \$] moved by rail = value of goods transported by southbound rail cars that cross the Mexico-USborder
 maritime ports, passenger vehicles \& buses, and trucks that are summed and distributed to the corridors using the distribution of AADT.
Sources:
1 From the Chihuahua BINSTechnical Committee representative.
2 Calculated by Multiplying 2000 Historical Data by Growth Rates





Table 8
Airport Data

	Chihuahua	Juarez	Total
Within 100 km of the US-M exico Border?	Yes	Yes	
Designated as an International POE?	Yes	Yes	
Historical Data for 2000			
Longest runway length [in meters].			
Tons of goods exported \& imported	1,531	349	1,880
Airport served by railroad facility?			X
If yes, name of railroad			X
On-land movement of air freight	X	X	X
Share of goods moved by truck			X
Share of goods moved by railroad			X
Projections for $2020{ }^{1}$			
Longest runway length			
Date becomes operational			X
Tons of goods exported \& imported			3,395
Airport served by railroad facility?			X
If yes, name of railroad			X
On-land movement of air freight	X	X	X
Share of goods moved by truck			
Share of goods moved by railroad			
Per Cent Change: 2000 to $2020^{2}$			
Longest runway length			
Tons of goods exported \& imported			80.6\%
Note:   Only data for facilities that meet minimum criteria are included   1 Calculated by Multiplying 2000 Historical Data by Growth Rates.   2 The $80.6 \%$ growth rate for airport volume is based on a compound annual growth rate of $3.0 \%$ - the level the level specified by the Mexican Secretariat of Communications and Transportation.			

Table 9 Maritime Port Data

There are NO M ARITIME PORTS in Chihuahua

Map 1
Chihuahua Border Area



## CHIHUAHUA HIGHWAY DATA

## Methodology for Calculating Corridor Averages for Average Annual Daily Traffic [AADT], Level of Service [LOS], and Peak Hour Traffic Carrying Capacity

Corridor totals for highways are obtained for highway length, AADT, LOS and Peak Hour Traffic Carrying Capacity. The corridor total for each of these indicators is obtained by adding the data for each of the highways assigned to the corridor. The State BINS Technical Committee representative assigned the highways to the corridors. Each of the compilations for each of the indicators is now reviewed.

Highway Length-the length of each highway within the 100 km limit. The length is obtained for each highway by subtracting the beginning mile marker, from the last mile marker. If segments are omitted, those segments and their data are omitted from the highway total. The highway length for the entire corridor is obtained by summing the highway length for each highway in the corridor.

Weighted Average—an average in which each of the observations is multiplied [or "weighted"] by a factor before calculations. In addition, these weights sum to unity or one [1]. Weighted averages are used so that short and long segments of roadway are counted proportionately in calculating the average for the entire highway.

Average Annual Daily Traffic-the weighted average AADT for each highway is obtained in several steps. Step 1: obtain the segment weights by dividing each segment length by the total highway length. The percent of the highway contained in the segment under investigation is the highway weight. Step 2: This highway weight is then multiplied by the AADT for that segment to obtain the weighted AADT for the segment. Step 3: The weighted AADT for all the segments are summed to obtain the weighted average AADT for the highway. The weighted average AADT for all the highways in the corridor are then summed to obtain the Corridor Total AADT.

Level of Service-the weighted average LOS for each highway is calculated in the same manner as that used for AADT. A maj or difference is that LOS is provided in the letters A, B, C, D, E, FO, F1, F2 and F3. These letters are converted to numbers using the following system, $A=1, B=2, C=3, D=4, E=5, F 0=6$, $\mathrm{F} 1=7, \mathrm{~F} 2=8$, and $\mathrm{F} 3=9$. After the conversions the following steps are used to calculate LOS for each highway. Step 1: obtain the segment weights by dividing each segment length by the total highway length. The percent of the highway contained in the segment under investigation is the highway weight. Step 2: This highway weight is then multiplied by the LOS number for that segment to obtain the weighted LOS number for the segment. Step 3: The weighted LOS number for all the segments are summed to obtain the weighted average LOS for the highway. The weighted average LOS number for all the highways in the corridor are then summed to obtain the Corridor Total LOS.

Peak Hour Traffic Carrying Capacity [PCAP]-the weighted average PCAP for each highway is obtained in several steps. Step 1: obtain the segment weights by dividing each segment length by the total highway length. The percent of the highway contained in the segment under investigation is the highway weight. Step 2: This highway weight is then multiplied by the PCAP for that segment to obtain the weighted PCAP for the segment. Step 3: The weighted PCAP for all the segments are summed to obtain the weighted average PCAP for the highway. The weighted average PCAP for all the highways in the corridor are then summed to obtain the Corridor Total PCAP.

Table 1
Highway Data Compiled Into Corridor Form
Used in Table 5 of Corridor Evaluation for Chihuahua
Segment Length is the Basis for Estimating the Weighted Average for AADT, LOS and Capacity









## CORRIDOR EVALUATION COAHUILA RESULTS AND DATA

Corridor evaluations are conducted to determine the corridors with the greater needs. This corridor evaluation uses quantifiable data with a systematic method to evaluate transportation corridors. Corridors are combinations of modes that move people, vehicles and goods from one location to another. To facilitate the evaluation process, the computations are calculated in formulas contained in the spreadsheets that will be sent to each of the states. Each evaluation spreadsheet is tailored to each state, thus each state's evaluation spreadsheet contains unique data - even though the methodology is the same. It is envisioned that each state will use its spreadsheet to conduct corridor evaluations, at its discretion.

Overall, the evaluation is conducted by compiling data, allocating the data to corridors and comparing corridors [within a state] to one another. There are 16 indicators 1 for which we compile data for each corridor. The overall evaluation uses two broad categories of data:

1. Historical Data - data for 16 indicators for the year 2000.
2. Change Data - a combination of actual changes for the 16 indicators from 2000 to 2020 and percent changes for the same 16 indicators from 2000 to 2020.

Conducting the evaluations is based on the ordering of data from highest to lowest to determine need. For example, assume there are three corridors in a state and the Average Annual Daily Traffic [AADT] in Corridor A is 157,000, the AADT for Corridor B is 450,000 and the AADT for Corridor C is 30,000. In this example, Corridor B is listed first because it has the highest AADT [450,000], its evaluation results are one, and it has the highest need. Corridor A is listed second because its AADT is 157,000 [second highest], its evaluation results are two, and it has the second highest need. Corridor C is listed third because it has the lowest AADT [30,000], its evaluation results are three and it has the lowest need. This process is repeated for all 16 indicators with data for calendar year 2000, for all 16 indicators for the change in the data between 2000 and 2020, and all 16 indicators for the percent change in the data between 2000 and 2020. There are a total of 48 evaluations compiled if all the data are present.

Higher values for the indicators represent more traffic (AADT), more congestion (LOS), more trade (dollar value of air, maritime, rail and truck cargo across POEs), more vehicles (number of passenger vehicles, trucks, buses, and rail cars across a POE), which point to both the relative importance of the corridor and its infrastructure needs. The highest value is given "first place" or a score of one and represents the highest need.

[^17]The evaluation results are summed by mode. For example, there are four indicators for highways AADT, the highway length [in miles], the level of service [LOS] and the highway capacity at peak hours. If a corridor was listed first for each indicator, its highway score would be a four [a score of one for each indicator]. This is done for Land Ports of Entry [POE - five indicators], airports [one indicator], maritime ports [two indicators] and railroads [four indicators]. The lower the score, the higher the listing. It follows that the lowest mode score represents the corridor with the greatest need for that mode.

The overall score for each corridor is then calculated by summing the five modes scores [one each for highways, POE, airports, maritime ports and railroads]. The corridor with the lowest overall score is listed first and has the highest overall need. The corridor with the second lowest overall score is listed second and has the second highest need. The corridor with the highest overall score is listed third and has the lowest overall need.

Recall there is one historical component and there are two change components (change in absolute terms and percent change). Without any adjustments, the change component has twice the impact on the final result as the historical data. It was decided that the historical values are as important as the projected changes. To accomplish equal weighting, the historical scores are multiplied by two.

## GENERAL DESCRIPTION OF COAHUILA'S CORRIDORS

## Corridors

Coahuila identified four corridors for the study and they are called the Piedras Negras-Ciudad [Cd] Acuña Corridor, the Morelos-Cd. Acuña Corridor, the Sabinas-Piedras Negras Corridor and the Boquillas del Carmen a Muzquiz Corridor. The Coahuila BINS Technical Committee representative provided no data on the Boquillas del Carmen a Muzquiz Corridor.

## Highways

The Piedras Negras-Cd. Acuña Corridor is composed of one highway: MX-2. The Morelos-Cd. Acuña Corridor is composed of one highway: MX-29. The Sabinas-Piedras Negras Corridor is composed of one highway: MX-57. No highways were identified and assigned to the Boquillas del Carmen a Muzquiz Corridor. No Level of service [LOS] or highway capacity data are available, therefore, the current and future level of congestion on Coahuila's corridor cannot be established.

## Land Ports of Entry [POE]

There are four bridge POE crossings on the Mexico-U.S. border in Coahuila. Trucks cross at two of the bridges while passenger vehicles and buses cross at all four. In calendar year 2000, about 183,000 trucks crossed into Coahuila through the two bridge POEs and about 5.5 million passenger vehides and buses entered Coahuila through the four bridges.

## Airports

No data for Airports were specified by the Coahuila BINS Technical Committee Representative

## Railroads

The Ferrocarnil Mexicano [FERROMEX] Rail Line operates in two of the four corridors: The Piedras NegrasCd. Acuña and the Morelos-Cd. Acuña. No data was provided for this rail line by the Coahuila BINS Technical Committee representative.

## Maritime Ports

There are NO MARITIME PORTS in Coahuila.

Source: Coahuila BINS Technical Committee representative, the Mexican Secretariat of Communication and Transportation and the Texas BINSTechnical Committee representative. See Tables 6-9 for details.

## ANALYSIS OF CORRIDOR EVALUATION RESULTS

The Sabinas-Piedras Negras Corridor is listed first. The Morelos-Ciudad.Acuña Corridor is listed second. The Piedras NegrasCiudad Acuña Corridor is listed third. The Sabinas-Piedras Negras Corridor is listed first by virtue of the fact that it is listed first with respect to historical data and change data.

## Historical Data

This discussion reviews highway and land POE with their results. With regard to the highways, the Sabinas-Piedras Negras Corridor is listed first followed by the Piedras NegrasCd. Acuña Corridor and then by the Morelos-Cd. Acuña Corridor. The Sabinas-Piedras Negra Corridor is listed first for AADT [99,016] and second in highway length [133 km] while the Piedras NegrasCd. Acuña Corridor is listed first for highway length [219.3 km] and third for AADT [1,521]. No Level of service [LOS] or highway capacity data are available, therefore, the current and future level of congestion on Arizona's corridor cannot be established.

For truck and passenger vehicle data, the Sabinas-Piedras Negras Corridor is always listed first by virtue of the fact that data are allocated based on the distribution of AADT amongst the Corridors and, as noted above, the Sabinas-Piedras Negras is listed first with respect to AADT.

There are no maritime ports in Coahuila and no data were provided for airports and railroads.

## Change Data

This discussion reviews highway and land POE data for both absolute changes and percent changes. With regard to absolute changes in highway data, the Sabinas-Piedras Negras Corridor is listed first by virtue of the fact that it is listed first for AADT with an increase of 9,978. In addition, the SabinasPiedras Negras Corridor is tied for first for highway length with the other corridors where there was no change with regard to highway length.

For trucks and passenger vehicles, the SabinasPiedras Negras Corridor is always listed first by virtue of the fact that its 2000 year data is greater than the other three corridors and all the corridors use the same growth rates.

With regard to percent changes in highway data, the Piedras Negras-Cd. Acuña Corridor is listed first because that it is listed first in AADT growth [with 165.3\%] and tied for first in growth of highway length with the other three corridors [where there was no change].

For trucks and passenger vehicles, the four corridors are always tied for first by virtue of the fact that the growth rates are the same for each corridor.

There are no maritime ports in Coahuila and no data were provided for airports and railroads.
Note: There is a fourth corridor titled the Boquillas del Carmen a Muzquiz Corridor; however, no information was provided on this corridor.

Table 1
Summary Corridor Results

	Corridor Scores ${ }^{1}$				Evaluation Results			
	A	B	C	$\mathrm{D}^{2}$	A	B	C	D
	P.   NegrasCd.   Acuña	Morelos   - Cd.   Acuña	SabinasP. Negras	Boquillas del   Carmen a Muzquiz ${ }^{2}$				
Historical Data for $200{ }^{3}$								
Highways	8	10	6		2	3	1	
Land Ports of Entry	12	8	4		3	2	1	
Airports ${ }^{4}$								
Maritime Ports ${ }^{5}$								
Railroads ${ }^{6}$								
Sum of Historical Scores:	20	18	10		3	2	1	
Changes Between 2000 and 2020 ${ }^{7}$								
Highways	5	8	5		1	3	1	
Land Ports of Entry	8	6	4		3	2	1	
Airports ${ }^{4}$								
Maritime Ports ${ }^{5}$								
Railroads ${ }^{6}$								
Sum of Change Scores:	13	14	9		2	3	1	
Overall Scores ${ }^{8}$ :	33	32	19					
Overall Result:	3	2	1					

## Notes:

${ }^{1}$ The Corridor Scores are the Evaluation Results in Tables 2, 4 and 5.
2 The Coahuila BINSTechnical representative specified four corridors, including a corridor titled the Boquillas del Carmen a Muzquiz Corridor. However no highways were identified and assigned to this corridor, and no data are provided for the corridor. Historical Scores from Table 2. To insure equal weighting with the Changes scores, the Historical corridor scores are multiplied by two.
4 No data were provided on airport traffic.
5 There are no maritime ports in Coahuila.
6 No data were provided on railroad traffic.
7 The Changes Scores is the sum of the Corridor Scoresfrom Table 3 [Corridor Changes] and the Corridor Scores from Table 5 [Corridor Percent Changes].
8 The Overall Score is the sum of the Historical Score and the Changes Score The Historical Data scores and A17the Changes Between 2000 and 2020 scores are equally weighted.

Lower Score represents greater need.

Table 2
Corridor Data For 2000

	Corridor Raw Data				Evaluation Results			
	A	B	C	D	A	B	C	D
	P. NegrasCd. Acuña	MorelosCd. Acuña	Sabinas-   P. Negras	Boquillas del Carmen a Muzquiz				
Highways								
Average Annual Daily Traffic	1,521	1,916	6,050		3	2	1	
Highway Length [in Km.]	219.3	104.0	133.0		1	3	2	
$\operatorname{LOS}[\mathrm{A}=1$ to $\mathrm{F}=9$ ]								
Capacity at Peak Hour								
		Highway Scores			4	5	3	
		Overall Highway Result			2	3	1	
Land Port of Entry Border   Crossing								
Number trucks	29,326	36,942	116,648		3	2	1	
Total volume [tons]								
Value of goods Millions \$								
\#passenger vehicles \& buses	874,081	1,101,078	3,476,785		3	2	1	
		POE Scores			6	4	2	
		Overall POE Result			3	2	1	
Airports ${ }^{1}$ (1)								
Total volume [tons]								
		Airport Scores						
		Overall Airport Result						
M aritime Ports - NONE								
Total volume [millionstons]								
Total number TEUs								
		M aritime Port Score						
		Overall M aritime Result						
Railroads Border Crossing at POE ${ }^{1}$								
Number rail cars								
Total volume [tons]								
Total Number TEUs								
Value of goods Millions \$								
		Railroad Scores						
		Overall Railroad Result						
Total AADT in Three Corridors	Share of AADT Among Corridors							
9,487	16.0\%	20.2\%	63.8\%	0.0\%				

## Notes:

POE data are assigned to Corridors based on AADT distribution.
$1 \quad$ No data were provided on airports or railroads.
Sources:Coahuila BINSTechnical Committee representative and the Mexican Secretariat of Communications and Transportation. See
Tables 6-9 for details.
Lower Score represents greater need.

Table 3
Corridor Data And Results For 2020


Table 4
Corridor Changes and Results, 2000-2020

	Corridor Raw Data				Evaluation Results			
	A	B	C	D	A	B	C	D
	P. NegrasCd. Acuña	Morelos Cd. Acuña	Sabinas- $P$. Negras	Boquillas del Carmen a Muzquiz				
Highways								
Average Annual Daily Traffic	2,514	3,099	9,978		2	3	1	
Highway Length [in Km.]	0.00	0.00	0.00		1	1	1	
LOS[ $\mathrm{A}=1$ to $\mathrm{F}=9$ ]								
Capacity at Peak Hour								
		Highw ay Scor	res		3	4	2	
		Overall Hig	way Result		2	3	1	
Land Port of Entry Border Crossing								
Number trucks	23,775	29,308	94,364		3	2	1	
Total volume [tons]								
Value of goods Millions\$								
\#passenger vehicles \& buses	1,070,754	1,319,916	4,249,796		3	2	1	
		POE Scores			6	4	2	
		Overall POE	Result		3	2	1	
Airports ${ }^{1}$								
Total volume [tons]								
		Airport Sco						
		Overall Air	ort Result					
Maritime Ports - NONE								
Total volume [tons]								
Total number TEUs								
		Maritime P	rt Score					
		Overall Ma	time Result					
Railroads Border Crossing at POE ${ }^{1}$								
Number rail cars								
Total volume [tons]								
Total Number TEUs								
Value of goods Millions\$								
		Railroad Sc	res					
		Overall Rai	oad Result					
Total AADT in Three Corridors		re of AADT	mong Corrid					
15,591	16.1\%	19.9\%	64.0\%	0.0\%				

## Notes:

POE data are assigned to Corridors based on AADT distribution.
${ }^{1}$ No data were provided on airports or railroads.
Differences are estimated by subtracting the year 2000 data from the 2020 projections.
See Tables 6-9 for details.
Lower score represents greater need.

Table 5
Corridor Percent Changes, 2000-2020


Table 6
Highway Data

Summary Data for the Piedras Negras-Cd. Acuña Corridor				
Calendar Year 2000			Projections for 2020	
	M X-2	Total	M X-2	Total
AADT:	1,521	1,521	4,035	4,035
Highway Length:	219.3	219.3	219.3	219.3
Summary Data for the Morelos-Cd. Acuña Corridor				
Calendar Year 2000			Projections for 2020	
	M X-29	Total	M X-29	Total
AADT:	1,916	1,916	5,015	5,015
Highw ay Length:	104.0	104.0	104.0	104.0
Summary Data for the Sabinas-Piedras Negras Corridor				
Calendar Year 2000			Projections for 2020	
	M X-57	Total	M X-57	Total
AADT:	6,050	6,050	16,028	16,028
Highway Length:	133.0	133.0	133.0	133.0
Note: The Coahuila BINSTechnical representative specified four corridors, including a corridor titled the Boquillas del Carmen a Muzquiz Corridor. However no highways were identified and assigned to this corridor, and no data are provided for the corridor.				
Source: Coahuila BINSTechnical Committee Representative and the Mexican Secretariat of Communications and Transportation				

Table 7
Compiled Coahuila [POE] Crossing Data

	Ciudad Acuña	Ciudad   Acuña II   Presa La   Amistad	Piedras Negras	Camino RealCoahuila Piedras Negras II	Total
Federal inspection facilities at POE?	Yes	Yes	Yes	Yes	
Southbound POE Crossing Data for $2000{ }^{1}$					
Number trucks	74,023	0	0	108,892	182,915
Tons of goods					
Value [Millions\$] moved by truck					
Number of passenger vehicles	2,043,686	41,528	1,192,316	2,166,363	5,443,893
Number of buses	5,374	0	2,068	608	8,050
Number passenger vehicles \& buses					5,451,943
Number of rail cars					X
Volume of tons moved by rail					X
Number of TEUs moved by rail					X
Value [Millions \$] moved by rail					X
Southbound POE Crossing Data for 2020²:					
Number trucks					330,363
Tons of goods					
Value [Millions\$] moved by truck					
Number of passenger vehicles					X
Number of buses					X
Number passenger vehicles \& buses					12,092,410
Number of rail cars					X
Volume of tons moved by rail					X
Number of TEUs moved by rail					X
Value [Millions \$] moved by rail					X
Per Cent Change in POE Data: 2000 to 2020					
Number trucks ${ }^{3}$					80.6\%
Tons of goods					
Value [Millions\$] moved by truck					
Number of passenger vehicles					X
Number of buses					X
Number passenger vehicles \& buses ${ }^{4}$					121.8\%
Number of rail cars					X
Volume of tons moved by rail					X
Number of TEUs moved by rail					X
Value [Millions \$] moved by rail					X
Notes:   Number of trucks = southbound trucks that cross the US-M exico border   Tons of goods = carried by southbound trucksthat cross the US-M exico border.   Value [Millions $\$$ ] moved by truck = value of goods moved by southbound trucks that cross the US-Mexico border.   Number of passenger vehicles = southbound passenger vehicles that cross the US-M exico border.					

Number of buses = southbound buses that cross the US-M exico border.
Number passenger vehides \& buses =sum of southbound passenger vehicles and buses that cross the US-Mexico border.
Number of rail cars = southbound rail cars that cross the USMexico border.
Volume of tons moved by rail =transported by the southbound rail cars that cross the US-Mexico border.
Number of TEUs moved by rail = Twenty foot Equivalent containers [TEUs] moved by rail that are southbound and cross the US-M exico border.
Value [Millions $\$$ ] moved by rail = value of goods transported by southbound rail cars that cross the US-M exico border.
Cells are X out when no totals are intended. Rail data, for example, are assigned to corridors by the BINS State Technical Committee representative. This makes railroads different from aiports, maritime ports, passenger vehicles \& buses, and trucks that are summed and distributed to the corridors using the distribution of AADT.

## Sources:

1 For 'Ciudad Acuña', the data comesfrom the Coahuila BINSTechnical Committee representative. For 'Ciudad Acuna II" , 'Piedras Negras' \& 'Camino Real-Coahuila', SourcePoint uses data provided by the Texas BINSTechnical Committee representative for Northbound trucks, passenger vehicles and buses that cross into the US at those POE. The Texas data on trucks, passenger vehicles and buses are assumed to be the same for Southbound traffic, therefore, the same numbers are used for the Sourthbound numbers for these three ports of entry.
2 Calculated by Multiplying 2000 Historical Data by Growth Rates
${ }^{3}$ The $80.6 \%$ growth rate for truck data is based on a compound annual growth rate of $3.0 \%$ - the level specified by the Mexican Secretariat of Communications and Transportation
4 The growth rate for passenger vehicles and buses is the same as that observed for the change in Average Annual Daily Traffic [AADT] in the highway segments nearest the Mexico-US border. These AADT data were obtained for MX-29 and MX-57 from the Coahuila BINS Technical Committee representative. The total change in AADT is17,631 or $121.8 \%$. The $121.8 \%$ is used to forecast the number of border crossings for passenger vehicles and buses in 2020.

Table 8
Airport Data

No airport data was provided.

Table 9
Maritime Port Data

There are NO MARITIME PORTS in Coahuila.

## Coahuila Border Area



## COAHUILA HIGHWAY DATA

## Methodology For Calculating Corridor Averages for Average Annual Daily Traffic [AADT], Level of Service [LOS], and Peak Hour Traffic Carrying Capacity

Corridor totals for highways are obtained for highway length, AADT, LOS and Peak Hour Traffic Carrying Capacity. The corridor total for each of these indicators is obtained by adding the data for each of the highways assigned to the corridor. The State BINSTechnical Committee representative assigned the highways to the corridors. Each of the compilations for each of the indicators is now reviewed.

Highway Length—the length of each highway within the 100 km limit. The length is obtained for each highway by subtracting the beginning mile marker, from the last mile marker. If segments are omitted, those segments and their data are omitted from the highway total. The highway length for the entire corridor is obtained by summing the highway length for each highway in the corridor.

Weighted Average—an average in which each of the observations is multiplied [or "weighted"] by a factor before calculations. In addition, these weights sum to unity or one [1]. Weighted averages are used so that short and long segments of roadway are counted proportionately in calculating the average for the entire highway.

Average Annual Daily Traffic—the weighted average AADT for each highway is obtained in several steps. Step 1: obtain the segment weights by dividing each segment length by the total highway length. The percent of the highway contained in the segment under investigation is the highway weight. Step 2 : This highway weight is then multiplied by the AADT for that segment to obtain the weighted AADT for the segment. Step 3: The weighted AADT for all the segments are summed to obtain the weighted average AADT for the highway. The weighted average AADT for all the highways in the corridor are then summed to obtain the Corridor Total AADT.

Level of Service-the weighted average LOS for each highway is calculated in the same manner as that used for AADT. A major difference is that LOS is provided in the letters A, B, C, D, E, F0, F1, F2 and F3. These letters are converted to numbers using the following system, $A=1, B=2, C=3, D=4, E=5, F 0=6, F 1=7$, $F 2=8$, and $\mathrm{F} 3=9$. After the conversions the following steps are used to calculate LOS for each highway. Step 1: obtain the segment weights by dividing each segment length by the total highway length. The percent of the highway contained in the segment under investigation is the highway weight. Step 2 : This highway weight is then multiplied by the LOS number for that segment to obtain the weighted LOS number for the segment. Step 3: The weighted LOS number for all the segments are summed to obtain the weighted average LOS for the highway. The weighted average LOS number for all the highways in the corridor are then summed to obtain the Corridor Total LOS.

Peak Hour Traffic Carrying Capacity [PCAP]-the weighted average PCAP for each highway is obtained in several steps. Step 1: obtain the segment weights by dividing each segment length by the total highway length. The percent of the highway contained in the segment under investigation is the highway weight. Step 2: This highway weight is then multiplied by the PCAP for that segment to obtain the weighted PCAP for the segment. Step 3: The weighted PCAP for all the segments are summed to obtain the weighted average PCAP for the highway. The weighted average PCAP for all the highways in the corridor are then summed to obtain the Corridor Total PCAP.


Table 2									
The Piedras Negras-Cd. Acuña Corridor									
MX-2 Calendar Year 2000						MX-2 Calendar Year 2020			
Within 100 km of the US-Mexico Border?					Y				
Serves an International POE?					Y				
Seg-	Begin	End		Avg Ann		Begin	End		Avg Ann
ment	Post	Post	Length	Daily		Post	Post	Length	Daily
\#	Mile	Mile	Miles	Traffic		Mile	Mile	Miles	Traffic
1	0.000	46.000	46.000	2,652		0.000	46.000	46.000	7,037
2	46.000	83.300	37.300	2,280		46.000	83.300	37.300	6,050
3	83.300	83.300	0.000	2,260		83.300	83.300	0.000	5,711
4	0.000	16.900	16.900	1,870		0.000	16.900	16.900	4,962
5	16.900	42.000	25.100	580		16.900	42.000	25.100	1,539
6	42.000	42.000	0.000	842		42.000	42.000	0.000	2,234
7	42.000	113.000	71.000	700		42.000	113.000	71.000	1,857
8	0.000	10.600	10.600	1,721		0.000	10.600	10.600	4,566
9	10.600	23.000	12.400	995		10.600	23.000	12.400	2,640
10	23.000	23.000	0.000	590		23.000	23.000	0.000	1,565
		Sum	219.300	14,490			Sum	219.300	38,161
Estimating the Weighted Averages									
		MX-2 Calendar Year 2000					MX-2 Calendar Year 2020		
		Segment	Weight	AADT			Segment	Weight	AADT
		1	21.0\%	556			1	21.0\%	1,476
		2	17.0\%	388			2	17.0\%	1,029
		3	0.0\%	0			3	0.0\%	0
		4	7.7\%	144			4	7.7\%	382
		5	11.4\%	66			5	11.4\%	176
		6	0.0\%	0			6	0.0\%	0
		7	32.4\%	227			7	32.4\%	601
		8	4.8\%	83			8	4.8\%	221
		9	5.7\%	56			9	5.7\%	149
		10	0.0\%	0			10	0.0\%	0
		Sum	100.0\%	1,521			Sum	100.0\%	4,035
Source:	Coahuila BINS Technical Committee representative								

## Table 3

## The Morelos-Cd. Acuña Corridor




## CORRIDOR EVALUATION NEW MEXICO RESULTS AND DATA

Corridor evaluations are conducted to determine the corridors with the greater needs. This corridor evaluation uses quantifiable data with a systematic method to evaluate transportation corridors. Corridors are combinations of modes that move people, vehicles and goods from one location to another. To facilitate the evaluation process, the computations are calculated in formulas contained in the spreadsheets that will be sent to each of the states. Each evaluation spreadsheet is tailored to each state, thus each state's evaluation spreadsheet contains unique data - even though the methodology is the same. It is envisioned that each state will use its spreadsheet to conduct corridor evaluations, at its discretion.

Overall, the evaluation is conducted by compiling data, allocating the data to corridors and comparing corridors [within a state] to one another. There are 16 indicators 1 for which we compile data for each corridor. The overall evaluation uses two broad categories of data:

1. Historical Data - data for 16 indicators for the year 2000.
2. Change Data - a combination of actual changes for the 16 indicators from 2000 to 2020 and percent changes for the same 16 indicators from 2000 to 2020.

Conducting the evaluations is based on the ordering of data from highest to lowest to determine need. For example, assume there are three corridors in a state and the Average Annual Daily Traffic [AADT] in Corridor A is 157,000, the AADT for Corridor B is 450,000 and the AADT for Corridor C is 30,000. In this example, Corridor B is listed first because it has the highest AADT [450,000], its evaluation results are one, and it has the highest need. Corridor A is listed second because its AADT is 157,000 [second highest], its evaluation results are two, and it has the second highest need. Corridor C is listed third because it has the lowest AADT [30,000], its evaluation results are three and it has the lowest need. This process is repeated for all 16 indicators with data for calendar year 2000, for all 16 indicators for the change in the data between 2000 and 2020, and all 16 indicators for the percent change in the data between 2000 and 2020. There are a total of 48 evaluations compiled if all the data are present.

Higher values for the indicators represent more traffic (AADT), more congestion (LOS), more trade (dollar value of air, maritime, rail and truck cargo across POEs), more vehicles (number of passenger vehicles, trucks, buses, and rail cars across a POE), which point to both the relative importance of the corridor and its infrastructure needs. The highest value is given "first place" or a score of one and represents the highest need.

[^18]The evaluation results are summed by mode. For example, there are four indicators for highways AADT, the highway length [in miles], the level of service [LOS] and the highway capacity at peak hours. If a corridor was listed first for each indicator, its highway score would be a four [a score of one for each indicator]. This is done for Land Ports of Entry [POE - five indicators], airports [one indicator], maritime ports [two indicators] and railroads [four indicators]. The lower the score, the higher the listing. It follows that the lowest mode score represents the corridor with the greatest need for that mode.

The overall score for each corridor is then calculated by summing the five modes scores [one each for highways, POE, airports, maritime ports and railroads]. The corridor with the lowest overall score is listed first and has the highest overall need. The corridor with the second lowest overall score is listed second and has the second highest need. The corridor with the highest overall score is listed third and has the lowest overall need.

Recall there is one historical component and there are two change components (change in absolute terms and percent change). Without any adjustments, the change component has twice the impact on the final result as the historical data. It was decided that the historical values are as important as the projected changes. To accomplish equal weighting, the historical scores are multiplied by two.

## GENERAL DESCRIPTION OF NEW MEXICO'S CORRIDORS

## Corridors

New Mexico has identified three corridors for the study and they are called the $\mathrm{I}-10$ corridor, the North-South corridor, and the Midwest corridor.

## Highways

The $1-10$ corridor is composed of seven highways: Interstate 10 [I-10], United States Highway 180 [US-180], New Mexico Route 9 [NM 9], NM 11, NM 81, NM 136 and NM 146. The North-South corridor is composed of one highway and it is Interstate 25 . The Midwest corridor is composed of two highways: US-54 and US-70.

## Land Ports of Entry [POE]

There are three land POEs in New Mexico: Antelope Wells, Columbus and Santa Teresa. The City of Sunland Park is proposing a new, non-commercial POE to be opened about five miles east of Santa Teresa. In calendar year 2000, about 37,000 trucks carrying about 387,000 tons of goods were transported into New Mexico through two land POEs. Also in calendar year 2000, about 466,000 passenger vehicles crossed the border into New Mexico through the four land POEs. The State of New Mexico envisions that truck crossings will increase almost 10 -fold to 354,000 in 2020, while passenger vehicle crossings will increase almost 7-fold to 3.7 million passenger vehicles in 2020.

## Airports

There are two airports located within 100 km of the US-Mexico border that are designated as international ports of entry; they are the Dona Ana County Airport and Las Cruces International Airport. The longest runway in 2000 is at Dona Ana at 8,500 feet. Both airports plan to lengthen their runway length by 2020. Dona Ana's will increase to 10,000 feet while Las Cruces will increase to 10,600 feet. No tonnage is reported for either airport. Dona Ana rarely receives shipments and for Las Cruces, goods that used to be transported there, are now transported at the airport in El Paso.

## Railroads

There are two railroads that operate within 100 km of the US-Mexico border and they are the Burlington Northern Santa Fe [BNSF] and the Union Pacific [UP]. The BNSF operates in the NorthSouth corridor. The UP operates in the l-10 corridor. No rail lines currently cross at any land POE in New Mexico. There is a proposal to move the rail crossing that currently crosses the international boundary between downtown Juarez, Mexico and El Paso, Texas, to the Santa Teresa POE in New Mexico. This is proposed to occur during the next 20 years. Once completed, it is projected that the number of rail cars crossing the border will be about 73,000 in 2020 transporting about 1.9 million tons of goods. The railroads that will use this crossing are the BNSF [operating in the North-South corridor] and the UP [operating in the East-West corridor].

## Maritime Ports

New Mexico has no maritime ports and no plans to construct a maritime port between now and 2020.

Source: New Mexico BINSTechnical Committee representative.

## ANALYSIS OF CORRIDOR EVALUATION RESULTS

The I-10 corridor is listed first. The Midwest Corridor is listed second. The North-South Corridor is listed third. The I-10 corridor obtains its first place listing by being listed first with respect to the historical data, and being listed for first with respect to the change data.

## Historical Data

This discussion will review highway land POE data with their results. With regard to the highways, the I-10 corridor is listed first because it is listed first in all four categories [AADT, highway length, LOS and capacity]. The Midwest corridor is listed second in all four categories and the North-South corridor is listed third or last in all four categories. The I-10 corridor had $42 \%$ more AADT then the Midwest corridor [ 26,450 versus 15,340 ] and is more than three times larger than the North-South corridor [26,450 versus 7,964]. The $\mathrm{I}-10$ corridor has five times as many highway miles as the Midwest corridor [522 versus 104] and about 9 times more than the North-South corridor [522 versus 60]. The LOS is similar for all the three corridors with each receiving an "A" [the LOS numbers are the following: $\mathrm{I}-10=1.4$, Midwest $=1.1$ and North-South $=1.0$ ]. The $\mathrm{I}-10$ corridor has about $10 \%$
more highway capacity than the Midwest corridor [13,816 versus 12,344] and twice as much capacity as the North-South corridor [13,816 versus 6,120].

For truck and passenger vehicle data, the I-10 corridor is always listed first by virtue of the fact that those data are distributed by the distribution of AADT amongst the corridors. For railroads and maritime ports, none of the corridors are ranked because no goods were transported by these modes.

## Change Data

This discussion will review highway, land POE and rail data for both absolute changes and percent changes. With regard absolute changes in highway data, the I-10 corridor is listed first by virtue of the fact that it is listed first in two categories [LOS and capacity] and tied for first in another category [highway length where there was no change in any of the corridors]. In the case of AADT, the Midwest corridor increased slightly more than the AADT change for the I-10 corridor [16,420 versus 15,477].

For trucks and passenger vehicles, the I-10 corridor is always listed first by virtue of the fact that the its 2000 year data are larger than the other two corridors, but all three corridors used the same growth rates. For railroad data, the I-10 and North-South corridors are tied for first because all rail crossing data is split between these two corridors.

With regard to percent changes in highway data, the I-10 corridor is listed first by virtue of the fact that it is listed first in two categories [LOS and capacity] and tied for first in another category [highway length where there was no change]. The Midwest corridor is listed second overall with a first place listing for AADT [its growth rate is $107 \%$ versus $58.5 \%$ for the $\mathrm{I}-10$ corridor and $55.4 \%$ for the North-South corridor], a first place tie for highway length, a second place tie for capacity and a third place listing for LOS.

For trucks and passenger vehicles, the three corridors are always tied for first by virtue of the fact that the truck rate is the same for each corridor and the passenger vehicle growth rate is the same for each corridor. For railroad data, the I-10 and North-South corridors are tied for first because all rail crossing data is split between these two corridors.

Table 1

## Summary Corridor Results

	Corridor Scores ${ }^{1}$			Evaluation Results		
	A	B	C	A	B	C
	I-10	NorthSouth	Midwest			
Historical Data for $200{ }^{2}$						
Highways	8	24	16	1	3	2
Land Ports of Entry	8	24	16	1	3	2
Airports ${ }^{3}$						
Maritime Ports ${ }^{4}$						
Railroads ${ }^{5}$						
Sum of Historical Scores:	16	48	32	1	3	2
Changes Between 2000 and 2020 ${ }^{6}$						
Highways	10	16	14	1	3	2
Land Ports of Entry	12	16	8	2	3	1
Airports ${ }^{3}$						
M aritime Ports ${ }^{4}$						
Railroads ${ }^{5}$	8	8	20	1	1	3
Sum of Change Scores:	30	40	42	1	2	3
Overall Scores ${ }^{7}$ :	46	88	74			
Overall Result:	1	3	2			

## Notes:

1 The Corridor Scores are the Evaluation Results in Tables 2, 4 and 5.
2 Historical Scores from Table 2. To insure equal weighting with the Changes scores, the Historical corridor scores are multiplied by two.
3 New Mexico has two airports within 100 km of the US-M exico border and designated as international ports of entry, however, there is limited data on goods movement and most of the goods movement now occurs at the airport in El Paso.
4 New Mexico has no maritime ports.
5 There are no railroad crossings at land POE in New Mexico today. The State of New Mexico envisionsthis will change by 2020 as the rail crossing on the US-M exico border between Juarez and El Paso [in Texas] will be relocated to the Santa Teresa POE in New Mexico.
6 The Changes Scores is the sum of the Corridor Scores from Table 4 [Corridor Changes] and the Corridor Scores from Table 5 [Corridor Percent Changes].
7 The Overall Score is the sum of the Historical Score and the Changes Score The Historical Data scores and A17the Changes Between 2000 and 2020 scores are equally weighted.

Lower Score represents greater need.

Table 2
Corridor Data For 2000

	Corridor Raw Data			Evaluation Results		
	A	B	C	A	B	C
	I-10	NorthSouth	Midw est			
Highways						
Average Annual Daily Traffic	26,450	7,964	15,340	1	3	2
Highway Length [in Km.]	522.70	60.00	104.10	1	3	2
LOS [A=1 to F = 9]	1.371	1.000	1.079	1	3	2
Capacity at Peak Hour	13,816	6,120	12,344	1	3	2
	Highway Scores			4	12	8
	Overall Highway Result			1	3	2
Land Port of Entry Border Crossing						
Number trucks	19,576	5,895	11,353	1	3	2
Total volume [tons]	205,895	61,997	119,409	1	3	2
Value of goods Millions \$	\$481	\$145	\$279	1	3	2
\#passenger vehicles \& buses	247,558	74,542	143,571	1	3	2
	POE Scores			4	12	8
	Overall POE Result			1	3	2
Airports						
Total volume [tons]						
	Airport Scores					
	Overall Airport Result					
M aritime Ports - NONE						
Total volume [millionstons]						
Total number TEUs						
	Maritime Port Score					
	Overall M aritime Result					
Railroads Border Crossing at $\mathrm{POE}^{1}$						
Number rail cars						
Total volume [tons]						
Total Number TEUs						
Value of goods Millions \$						
	Railroad Scores					
	Overall Railroad Result					
Total AADT in Three Corridors	Share of AADT Among Corridors					
49,754	53.2\%	16.0\%	30.8\%			

Notes:
${ }^{1}$ There were no rail crossings at New Mexico POE in calendar year 2000..
OE, Airport \& Maritime port data are assigned to Corridors based on AADT distribution.
Historical data from New Mexico BINSTechnical Committee Representative, see Tables 6-9 for details.
lower Score represents greater need.

Table 3
Corridor Data and Results For 2020

	Corridor Raw Data			Evaluation Results		
	A	B	C	A	B	C
	I-10	NorthSouth	Midwest			
Highways						
Average Annual Daily Traffic	41,927	12,378	31,759	1	3	2
Highway Length [in Km.]	522.70	60.00	104.10	1	3	2
$\operatorname{LOS}[\mathrm{A}=1$ to $\mathrm{F}=9$ ]	1.816	1.000	1.040	1	3	2
Capacity at Peak Hour	13,869	6,120	12,344	1	3	2
	Highway Scores			4	12	8
	Overall Highway Result			1	3	2
Land Port of Entry Border Crossing						
Number trucks	172,260	50,856	130,484	1	3	2
Total volume [tons]	2,583,898	762,837	1,957,265	1	3	2
Value of goods Millions\$	\$8,056	\$2,378	\$6,102	1	3	2
\#passenger vehicles \& buses	1,778,749	525,135	1,347,376	1	3	2
			POE Scores	4	12	8
			POE Result	1	3	2
Airports						
Total volume [tons]						
	Airport Scores					
	Overall Airport Result					
Maritime Ports - None						
Total volume [million tons]						
Total number TEUs						
	Maritime Port Score					
	Overall Maritime Result					
Railroads Border Crossing at POE ${ }^{1}$						
Number rail cars	36,400	36,400	0	1	1	3
Total volume [tons]	946,400	946,400	0	1	1	3
Total Number TEUs	0	0	0	1	1	3
Value of goods Millions \$	\$4,004	\$4,004	\$0	1	1	3
	Railroad Scores			4	4	12
	Overall Railroad Result			1	1	3
Total AADT in Three Corridors	Share of AADT Among Corridors					
86,064	48.7\%	14.4\%	36.9\%			

## Notes:

1 The 2020 rail data projections represent crossings made by the Burlington Northern Santa Fe No data were provided on airports or railroads. [BNSF] railroad and the Union Pacific [UP] railroad. The 2020 data are divided equally between the two railroads. Since the BNSF operates in the North -South corridor and the UP operates in the I-10 corridor, these data are divided equally among these two corridors
POE, Airport \& Maritime port data are assigned to Corridors based on AADT distribution
All forecasts are from the New Mexico BINSTechnical Committee representative. See Tables 6-9
Lower Score represents greater need.

Table 4
Corridor Changes and Results, 2000-2020

	Corridor Raw Data			Evaluation Results		
	A	B	C	A	B	C
	I-10	NorthSouth	Midwest			
Highways						
Average Annual Daily Traffic	15,477	4,414	16,420	2	3	1
Highway Length [in Km.]	0.00	0.00	0.00	1	1	1
LOS[A=1 to F =9]	0.446	0.000	-0.038	1	2	3
Capacity at Peak Hour	53	0	0	1	2	2
	Highw ay Scores			5	8	7
	Overall Highway Result			1	3	2
Land Port of Entry Border Crossing						
Number trucks	135,025	38,506	143,246	2	3	1
Total volume [tons]	2,095,728	597,647	2,223,325	2	3	1
Value of goods Millions \$	\$6,663	\$1,900	\$7,069	2	3	1
\#passenger vehicles \& buses	1,357,847	387,222	1,440,519	2	3	1
			POE Scores	8	12	4
			POE Result	2	3	1
Airports						
Total volume [tons]						
	Airport Scores					
	Overall Airport Result					
Maritime Ports - None						
Total volume [million tons]						
Total number TEUs						
	Maritime Port Score					
	Overall M aritime Result					
Railroads Border Crossing at POE						
Number rail cars	36,400	36,400	0	1	1	3
Total volume [tons]	946,400	946,400	0	1	1	3
Total Number TEUs	0	0	0	1	1	1
Value of goods Millions \$	\$4,004	\$4,004	\$0	1	1	3
	Railroad Scores			4	4	10
	Overall Railroad Result			1	1	3
Total AADT in Three Corridors	Share of AADT Among Corridors					
36,310	42.6\%	12.2\%	45.2\%			

Notes:
POE, Airport \& M aritime port data are assigned to Corridors based on AADT distribution Differences are estimated by subtracting the year 2000 data from the 2020 projections.
See Tables 5-8
Lower Score representsgreater need.

Table 5
Corridor Percent Changes and Results, 2000-2020

	Corridor Raw Data			Evaluation Results		
	A	B	C	A	B	C
	I-10	NorthSouth	Midwest			
Highways						
Average Annual Daily Traffic	58.5\%	55.4\%	107.0\%	2	3	1
Highway Length [in Km.]	0.0\%	0.0\%	0.0\%	1	1	1
$\operatorname{LOS}[\mathrm{A}=1$ to $\mathrm{F}=9$ ]	32.5\%	0.0\%	-3.6\%	1	2	3
Capacity at Peak Hour	0.4\%	0.0\%	0.0\%	1	2	2
	Highway Scores			5	8	7
	Overall Highway Result			1	3	2
Land Port of Entry Border   Crossing						
Number trucks	860.2\%	860.2\%	860.2\%	1	1	1
Total volume [tons]	1269.5\%	1269.5\%	1269.5\%	1	1	1
Value of goods Millions\$	1728.3\%	1728.3\%	1728.3\%	1	1	1
\#passenger vehicles \& buses	684.1\%	684.1\%	684.1\%	1	1	1
			POE Scores	4	4	4
		Ove	POE Result	1	1	1
Airports						
Total volume [tons]						
	Airport Scores					
	Overall Airport Result					
Maritime Ports - None						
Total volume [million tons]						
Total number TEUs						
	Maritime Port Score					
	Overall M aritime Result					
Railroads Border Crossing at POE						
Number rail cars	+\%	+\%	0.0\%	1	1	3
Total volume [tons]	+\%	+\%	0.0\%	1	1	3
Total Number TEUs	0.0\%	0.0\%	0.0\%	1	1	1
Value of goods Millions\$	+\%	+\%	0.0\%	1	1	3
	Railroad Scores			4	4	10
	Overall Railroad Result			1	1	3
Notes:   See Tables 5-8   Lower Score represents greater need.						

Table 6
Highway Data


Table 7
Land Port of Entry [POE] Crossing Data

	Antelope Wells	Columbus	Santa Teresa	Sunland Park	Total
Federal inspection facilities at POE?	Yes	Yes	Yes	Yes	
Northbound POE Crossing Data for $2000{ }^{1}$					
Number trucks	0	4,878	31,946	0	36,824
Tons of goods	0	61,341	325,959	0	387,300
Value [Millions \$] moved by truck	\$0.0	\$27.2	\$877.2	\$0.0	\$904.4
Number of passenger vehicles	1,453	387,298	76,866	0	465,617
Number of buses	14	0	41	0	55
Number passenger vehicles \& buses	1,467	387,298	76,907	0	465,672
Number of rail cars	0	0	0	0	X
Volume of tons moved by rail	0	0	0	0	X
Number of TEUs moved by rail	0	0	0	0	X
Value [Millions \$] moved by rail	\$0.0	0	0	\$0.0	X

Northbound POE Crossing Data for $2020^{1}$

Number trucks	26,000	15,600	312,000	0	353,600
Tons of goods	390,000	234,000	$4,680,000$	0	$5,304,000$
Value [M illions $\$$ ] moved by truck	$\$ 780.0$	$\$ 156.0$	$\$ 15,600.0$	$\$ 0.0$	$\$ 16,536.0$
Number of passenger vehicles	109,500	$1,095,000$	912,500	$1,460,000$	$3,577,000$
Number of buses	1,460	0	72,800	0	74,260
Number passenger vehicles $\&$ buses	110,960	$1,095,000$	985,300	$1,460,000$	$3,651,260$
Number of rail cars	0	0	72,800	0	0
Volume of tons moved by rail	0	0	$1,892,800$	0	0
Number of TEUs moved by rail	0	0	0	0	X
Value [Millions $\$$ ] moved by rail	$\$ 0.0$	$\$ 0.0$	$\$ 8,008.0$	$\$ 0.0$	X

Per Cent Change in POE Data: 2000 to 2020

Number trucks					860.2\%
Tons of goods					1269.5\%
Value [Millions \$] moved by truck					1728.3\%
Number of passenger vehicles					X
Number of buses					X
Number passenger vehicles \& buses					684.1\%
Number of rail cars ${ }^{2}$					X
Volume of tons moved by rail ${ }^{2}$					X
Number of TEUs moved by rail ${ }^{2}$					X
Value [Millions \$] moved by rail ${ }^{2}$					X

Notes:
Number of trucks = northbound trucks that cross the US-M exico border
Tons of goods = carried by northbound trucks that cross the US-Mexico border.
Value [Millions \$] moved by truck = value of goods moved by northbound trucks that cross the US-M exico border.
Number of passenger vehicles = northbound passenger vehicles that cross the US-Mexico border.
Number of buses $=$ northbound buses that crossthe US-M exico border.

Number passenger vehides \& buses =sum of northbound passenger vehicles and buses that cross the USMexico border.
Number of rail cars = northbound rail cars that cross the US-M exico border.
Volume of tons moved by rail =transported by the northbound rail cars that cross the US-Mexico border.
Number of TEUs moved by rail =Twenty foot Equivalent containers [TEUs] moved by rail that are northbound and cross the US-M exico border.
Value [Millions $\$$ ] moved by rail = value of goodstransported by northbound rail cars that cross the US-M exico border.
The 2020 rail data projections represent crossings made by the Burlington Northern Santa Fe [BNSF] railroad and the Union Pacific [UP] railroad at the Santa Teresa POE. The 2020 data are divided equally between the two railroads. Since the BNSF operates in the NorthSouth corridor and the UP operates in the I-10 corridor, these data are divided equally among these two corridors.
Cells are X out when no totals are intended. Rail data, for example, are assigned to corridors by the BINS State Technical Committee representative. This makes railroads different from airports, maritime ports, passenger vehicles \& buses, and trucks that are summed and distributed to the corridors using the distribution of AADT.

## Sources:

${ }^{1}$ From New Mexico BINSTechnical Committee representative.
${ }^{2}$ Growth rates are not calculated for rail data because there are no rail data for the base year.

Table 8
Airport Data

	Dona Ana	Las Cruces	Total
Within 100 km of the US-M exico Border?	Y	Y	
Designated as an International POE?	Y	Y	
Historical Data for 2000			
Longest runway length	8,500	7,499	8,500
Tons of goods exported \& imported			
Airport served by railroad facility?			X
If yes, name of railroad			X
On-land movement of air freight	X	X	X
Share of goods moved by truck			X
Share of goods moved by railroad			X
Projections for 2020			
Longest runway length	10,000	10,600	10,600
Date becomes operational	J an 2008	2009	X
Tons of goods exported \& imported			
Airport served by railroad facility?			X
If yes, name of railroad			X
On-land movement of air freight	X	X	X
Share of goods moved by truck			
Share of goodsmoved by railroad			
Per Cent Change: 2000 to 2020			
Longest runway length			
Tons of goods exported \& imported			

## Notes:

Dona Ana County Airport receives very rarely receives shipments from out of country. Typical imported shipments are received through U.S. Customs at the El Paso International Airport.
Las Cruces International Airport is designated as an international port of entry due to import/export shipments in past years. However, they no longer import/export shipments from the airport, but the" port of entry" designation remains.

Source: New Mexico BINSTechnical Committee representative

Table 9 Maritime Port Data

There are NO MARITIME PORTS in New Mexico.

## Map 1

New Mexico Border Area


## NEW MEXICO HIGHWAY DATA

## Methodology For Calculating Corridor Averages for Average Annual Daily Traffic [AADT], Level of Service [LOS], and Peak Hour Traffic Carrying Capacity

Corridor totals for highways are obtained for highway length, AADT, LOS and Peak Hour Traffic Carrying Capacity. The corridor total for each of these indicators is obtained by adding the data for each of the highways assigned to the corridor. The State BINS Technical Committee representative assigned the highways to the corridors. Each of the compilations for each of the indicators is now reviewed.

Highway Length—the length of each highway within the 100 km limit. The length is obtained for each highway by subtracting the beginning mile marker, from the last mile marker. If segments are omitted, those segments and their data are omitted from the highway total. The highway length for the entire corridor is obtained by summing the highway length for each highway in the corridor.

Weighted Average—an average in which each of the observations is multiplied [or "weighted"] by a factor before calculations. In addition, these weights sum to unity or one [1]. Weighted averages are used so that short and long segments of roadway are counted proportionately in calculating the average for the entire highway.

Average Annual Daily Traffic-the weighted average AADT for each highway is obtained in several steps. Step 1: obtain the segment weights by dividing each segment length by the total highway length. The percent of the highway contained in the segment under investigation is the highway weight. Step 2: This highway weight is then multiplied by the AADT for that segment to obtain the weighted AADT for the segment. Step 3: The weighted AADT for all the segments are summed to obtain the weighted average AADT for the highway. The weighted average AADT for all the highways in the corridor are then summed to obtain the Corridor Total AADT.

Level of Service-the weighted average LOS for each highway is calculated in the same manner as that used for AADT. A major difference is that LOS is provided in the letters A, B, C, D, E, F0, F1, F2 and F3. These letters are converted to numbers using the following system, $A=1, B=2, C=3, D=4, E=5$, $F 0=6, F 1=7, F 2=8$, and $F 3=9$. After the conversions the following steps are used to calculate LOS for each highway. Step 1: obtain the segment weights by dividing each segment length by the total highway length. The percent of the highway contained in the segment under investigation is the highway weight. Step 2: This highway weight is then multiplied by the LOS number for that segment to obtain the weighted LOS number for the segment. Step 3: The weighted LOS number for all the segments are summed to obtain the weighted average LOS for the highway. The weighted average LOS number for all the highways in the corridor are then summed to obtain the Corridor Total LOS.

Peak Hour Traffic Carrying Capacity [PCAP]—the weighted average PCAP for each highway is obtained in several steps. Step 1: obtain the segment weights by dividing each segment length by the total highway length. The percent of the highway contained in the segment under investigation is the highway weight. Step 2: This highway weight is then multiplied by the PCAP for that segment to obtain the weighted PCAP for the segment. Step 3: The weighted PCAP for all the segments are summed to obtain the weighted average PCAP for the highway. The weighted average PCAP for all the highways in the corridor are then summed to obtain the Corridor Total PCAP.

Table 10								
Highw ay Data Compiled Into Corridor Form								
Used in Table 5 of Corridor Evaluation for New Mexico								
Segment Length is the Basis for Estimating the Weighted Average for								
AADT, LOS and Capacity								
Summary Data for the East-West Corridor for 2000								
	I-10	US-180	NM-9	NM-11	NM-81	NM-136	NM-146	Total
AADT:	17,947	2,092	436	2,542	66	3,211	156	26,450
Highway Length:	164.2	163.0	87.7	34.1	45.8	8.8	19.1	522.7
LOS:	B	A	A	A	A	A	A	A
LOS \#.	2.2	1.0	1.0	1.0	1.0	1.0	1.0	
Weighted   Average LOS:	0.7	0.3	0.2	0.1	0.1	0.0	0.0	1.4
Capacity:	6,216	1,600	500	800	500	3,200	1,000	13,816
LOS coding: $\mathrm{A}=1, \mathrm{~B}=2, \mathrm{C}=3, \mathrm{D}=4, \mathrm{E}=5, \mathrm{~F}=6$								
Summary Data for the East-West Corridor for 2020								
	I-10	US-180	NM-9	NM-11	NM-81	NM-136	NM-146	Total
AADT:	29,820	3,021	528	3,551	75	4,745	187	41,927
Highway Length:	164.2	163.0	87.7	34.1	45.8	8.8	19.1	522.7
LOS:	C	A	A	A	A	A	A	A
LOS \#.	3.3	1.3	1.0	1.0	1.0	1.0	1.0	
Weighted Average LOS:	1.0	0.4	0.2	0.1	0.1	0.0	0.0	1.8
Capacity:	6,269	1,600	500	800	500	3,200	1,000	13,869
LOS coding: $\mathrm{A}=1, \mathrm{~B}=2, \mathrm{C}=3, \mathrm{D}=4, \mathrm{E}=5, \mathrm{~F}=6$								




	The East-West Corridor: Calendar Year 2000 Data													
	New Mexico Route 9							New Mexico Route 11						
	Within 100 km of the US-Mexico Border?				Y			Within 100 km of the US-Mexico Border?				Y		
	Serves an International POE?				Y			Serves an International POE?				Y		
Seg-	Begin	End		Avg Ann	Level of Service		Peak Hr	Begin	End		Avg Ann	Level of Service		Peak Hr
ment	Post	Post	Length	Daily	A to	1 to	Traffic	Post	Post	Length	Daily	A to	1 to	Traffic
\#	Mile	Mile	Miles	Traffic	F	6	Capacity	Mile	Mile	Miles	Traffic	F	6	Capacity
1	0.000	44.100	44.100	478	A	1	500	0.000	3.100	3.100	2,873	A	1	800
2	44.100	87.700	43.600	394	A	1	500	3.100	34.100	31.000	2,509	A	1	800
3														
4														
5														
		Sum	87.700	872		2	1,000		Sum	34.100	5,382		2	1,600
Source:		New Mexico BINSTechnical Committee representative												
		Estimating the Weighted Averages for NM -9							Estimating the Weighted Averages for NM-11					
		Segment	Weight	AADT	Level of Service		Capacity		Segment	Weight	AADT	Level of Service		Capacity
		1	50.3\%	240		0.503	251		1	9.1\%	261		0.091	73
		2	49.7\%	196		0.497	249		2	90.9\%	2,281		0.909	727
		3							3					
		4							4					
		5							5					
		Sum	100.0\%	436	A	1.000	500		Sum	100.0\%	2,542	A	1.000	800
Notes:		Notes:	LOS coding	$A=1, B=2$,	$3, \mathrm{D}=4$	, F=6								




	The I-10 Corridor: Calendar Year 2020 Data													
	Interstate 10							United States 180						
	Within 100 km of the US-M exico Border?				Y			Within 100 km of the US-M exico Border?				Y		
	Serves an International POE?				Y			Serves an International POE?				Y		
Seg-	Begin	End		Avg Ann	Level of Service		Peak Hr	Begin	End		Avg Ann	Level of Service		Peak Hr
ment	Post	Post	Length	Daily	A to	1 to	Traffic	Post	Post	Length	Daily	A to	1 to	Traffic
\#	Mile	Mile	Miles	Traffic	F	6	Capacity	Mile	Mile	Miles	Traffic	F	6	Capacity
1	0.000	49.800	49.800	23,687	C	3	6,000	0.000	109.000	109.000	1,840	A	1	1,600
2	49.800	82.300	32.500	23,359	C	3	6,000	109.000	163.000	54.000	5,404	B	2	1,600
3	82.300	134.700	52.400	27,827	C	3	6,000							
4	134.700	149.500	14.800	47,936	D	4	6,000							
5	149.500	164.200	14.700	53,749	E	5	9,000							
		Sum	164.200	176,558		18	33,000		Sum	163.000	7,244		3	3,200
Source:	New Mex	co BINS Techn	ical Commi	e representat										
			Estimatin	the Weight	Avera	for I-1				stimating	he Weighte	Averag	or US-1	
		Segment	Weight	AADT	Level	ervice	Capacity		Segment	Weight	AADT	Level	ervice	Capacity
		1	30.3\%	7,184		0.910	1,820		1	66.9\%	1,230		0.669	1,070
		2	19.8\%	4,623		0.594	1,188		2	33.1\%	1,790		0.663	530
		3	31.9\%	8,880		0.957	1,915		3					
		4	9.0\%	4,321		0.361	541		4					
		5	9.0\%	4,812		0.448	806		5					
		Sum	100.0\%	29,820	C	3.269	6,269		Sum	100.0\%	3,021	A	1.331	1,600
Notes:	LOS codi	g: $A=1, B=$	$2, \mathrm{C}=3, \mathrm{D}$	, $\mathrm{E}=5, \mathrm{~F}=6$										


	The East-West Corridor: Calendar Year 2020 Data													
	New Mexico Route 9							New Mexico Route 11						
	Within 100 km of the US-M exico Border?				Y			Within 100 km of the US-M exico Border?				Y		
	Serves an International POE?				Y			Serves an International POE?				Y		
Seg-	Begin	End		Avg Ann	Level of Service		Peak Hr	Begin	End		Avg Ann	Level of Service		Peak Hr
ment	Post	Post	Length	Daily	A to	1 to	Traffic	Post	Post	Length	Daily	A to	1 to	Traffic
\#	Mile	Mile	Miles	Traffic	F	6	Capacity	Mile	Mile	Miles	Traffic	F	6	Capacity
1	0.000	44.100	44.100	582	A	1	500	0.000	3.100	3.100	4,009	A	1	800
2	44.100	87.700	43.600	474	A	1	500	3.100	34.100	31.000	3,505	A	1	800
3														
4														
5														
		Sum	87.700	1,056		2	1,000		Sum	34.100	7,514		2	1,600
Source:		New Mexico	BINS Techni	I Committee r	resentat									
			Estimating	the Weight	Avera	for NM				timating	the Weighted	Averag	or NM	
		Segment	Weight	AADT	Level	ervice	Capacity		Segment	Weight	AADT	Level	ervice	Capacity
		1	50.3\%	293		0.503	251		1	9.1\%	364		0.091	73
		2	49.7\%	236		0.497	249		2	90.9\%	3,186		0.909	727
		3							3					
		4							4					
		5							5					
		Sum	100.0\%	528	A	1.000	500		Sum	100.0\%	3,551	A	1.000	800
Notes:		Notes:	LOS coding	$A=1, B=2, C$	$3, \mathrm{D}=4$	, F=6								


	The East-West Corridor: Calendar Year 2020 Data													
	New Mexico Route 81							New Mexico Route 136						
	Within 100 km of the US-M exico Border?				Y			Within 100 km of the US-M exico Border?				Y		
	Serves an International POE?				Y			Serves an International POE?				Y		
Seg-	Begin	End		Avg Ann	Level of Service		Peak Hr	Begin	End		Avg Ann	Level of Service		Peak Hr
ment	Post	Post	Length	Daily	A to	1 to	Traffic	Post	Post	Length	Daily	A to	1 to	Traffic
\#	Mile	Mile	Miles	Traffic	F	6	Capacity	Mile	Mile	Miles	Traffic	F	6	Capacity
1	0.000	45.800	45.800	75	A	1	500	0.000	6.000	6.000	4,745	A	1	3,200
2								6.000	8.800	2.800	4,745	A	1	3,200
3														
4														
5														
		Sum	45.800	75		1	500		Sum	8.800	9,490		2	6,400
Source:		New Mexico	BINS Techni	l Committee r	resentat									
			stimating	the Weighted	Averag	or NM			Es	timating	隹 Weight	Averag	or NM-	
		Segment	Weight	AADT	Level	ervice	Capacity		Segment	Weight	AADT	Level	ervice	Capacity
		1	100.0\%	75		1.000	500		1	68.2\%	3,235		0.682	2,182
		2							2	31.8\%	1,510		0.318	1,018
		3							3					
		4							4					
		5							5					
		Sum	100.0\%	75	A	1.000	500		Sum	100.0\%	4,745	A	1.000	3,200
Notes:		Notes:	LOS coding	$A=1, B=2, C$	$3, \mathrm{D}=4$	, F=6								



New Mexico Highway Summary


New Mexico Highway Summary

	The Midwest Corridor: Calendar Year 2000 Data													
	United States 54							United States 70						
	Within 100 km of the US-M exico Border?				Y			Within 100 km of the US-M exico Border?				Y		
	Serves an International POE?				Y			Serves an International POE?				Y		
Seg-	Begin	End		Avg Ann	Level of Service		Peak Hr	Begin	End		Avg Ann	Level of Service		Peak Hr
ment	Post	Post	Length	Daily	A to	1 to	Traffic	Post	Post	Length	Daily	A to	1 to	Traffic
\#	Mile	Mile	Miles	Traffic	F	6	Capacity	Mile	Mile	Miles	Traffic	F	6	Capacity
1	0.000	64.300	64.300	5,832	A	1	6,000	150.700	151.700	1.000	22,947	C	3	7,200
2								151.700	154.700	3.000	28,859	C	3	7,200
3								154.700	154.900	0.200	22,176	B	2	7,200
4								154.900	162.100	7.200	12,166	A	1	7,200
5								162.100	190.500	28.400	6,227	A	1	6,000
		Sum	64.300	5,832		1	6,000		Sum	39.800	92,375		10	34,800
Source:		New Mexico	BINS Techni	Committee r	resentat									
			stimating	the Weight	Avera	for US-				stimating	the Weight	Avera	or US-	
		Segment	Weight	AADT	Level	ervice	Capacity		Segment	Weight	AADT	Level	ervice	Capacity
		1	100.0\%	5,832		1.000	6,000		1	2.5\%	577		0.075	181
		2							2	7.5\%	2,175		0.226	543
		3							3	0.5\%	111		0.010	36
		4							4	18.1\%	2,201		0.181	1,303
		5							5	71.4\%	4,443		0.714	4,281
		Sum	100.0\%	5,832	A	1.000	6,000		Sum	100.0\%	9,508	A	1.206	6,344
Notes:	LOS cod	$\mathrm{g}: \mathrm{A}=1, \mathrm{~B}=$	$2, \mathrm{C}=3, \mathrm{D}$	$4, \mathrm{E}=5, \mathrm{~F}=6$										

New Mexico Highway Summary

	The Midw est Corridor: Calendar Year 2020 Data													
	United States 54							United States 70						
	Within 100 km of the US-M exico Border?				Y			Within 100 km of the US-M exico Border?				Y		
	Serves an International POE?				Y			Serves an International POE?				Y		
Seg-	Begin	End		Avg Ann	Level of Service		Peak Hr	Begin	End		Avg Ann	Level of Service		Peak Hr
ment	Post	Post	Length	Daily	A to	1 to	Traffic	Post	Post	Length	Daily	A to	1 to	Traffic
\#	Mile	Mile	Miles	Traffic	F	6	Capacity	Mile	Mile	Miles	Traffic	F	6	Capacity
1	0.000	64.300	64.300	19,281	A	1	6,000	150.700	151.700	1.000	30,118	B	2	7,200
2								151.700	154.700	3.000	37,879	B	2	7,200
3								154.700	154.900	0.200	29,106	B	2	7,200
4								154.900	162.100	7.200	11,905	A	1	7,200
5								162.100	190.500	28.400	9,202	A	1	6,000
		Sum	64.300	19,281		1	6,000		Sum	39.800	118,210		8	34,800
Source:		New Mexico	BINS Techni	Committee r	resentativer									
			Estimating	the Weight	Avera	for US-				stimating	the Weight	Averag	or US-	
		Segment	Weight	AADT	Level	ervice	Capacity		Segment	Weight	AADT	Level	ervice	Capacity
		1	100.0\%	19,281		1.000	6,000		1	2.5\%	757		0.050	181
		2	0.0\%	0		0.000	0		2	7.5\%	2,855		0.151	543
		3							3	0.5\%	146		0.010	36
		4							4	18.1\%	2,154		0.181	1,303
		5							5	71.4\%	6,566		0.714	4,281
		6												
		Sum	100.0\%	19,281	A	1.000	6,000		Sum	100.0\%	12,478	A	1.106	6,344
Notes:		Notes:	LOS coding	$A=1, B=2, C$	$3, \mathrm{D}=4$	, F = 6								


Level of Service Look Up Table				
	LOS	Number		
	A	1		
	B	2		
	C	3		
	D	4		
	E	5		
	F	6		
Note:	This table ha	poses:		
	1. The first $p$	to assign n	mbers to LOS letters.	
	The LOS is	d by the Sta	and is in the form	
	letter, su	C, etc. Th	letters are	
	converted	bers using th	following scheme:	
	$\mathrm{A}=1, \mathrm{~B}=2$	, $\mathrm{E}=5, \mathrm{~F}=6$		
	2. The second	is to conve	average LOS	
	calculatio	ers. This oc	rs after the weight	
	average is	ed for a hig	vay and for a corrid	
	The lette	ded with the	anges are the follo	wing
	$\mathrm{A}=1.00$			
	B $=2.000$			
	$\mathrm{C}=3.000$			
	D $=4.000$			
	$\mathrm{E}=5.000$			
	$\mathrm{F}=6.000$			

## CORRIDOR EVALUATION NUEVO LEON RESULTS AND DATA

Corridor evaluations are conducted to determine the corridors with the greater needs. This corridor evaluation uses quantifiable data with a systematic method to evaluate transportation corridors. Corridors are combinations of modes that move people, vehicles and goods from one location to another. To facilitate the evaluation process, the computations are calculated in formulas contained in the spreadsheets that will be sent to each of the states. Each evaluation spreadsheet is tailored to each state, thus each state's evaluation spreadsheet contains unique data - even though the methodology is the same. It is envisioned that each state will use its spreadsheet to conduct corridor evaluations, at its discretion.

Overall, the evaluation is conducted by compiling data, allocating the data to corridors and comparing corridors [within a state] to one another. There are 16 indicators 1 for which we compile data for each corridor. The overall evaluation uses two broad categories of data:

1. Historical Data - data for 16 indicators for the year 2000.
2. Change Data - a combination of actual changes for the 16 indicators from 2000 to 2020 and percent changes for the same 16 indicators from 2000 to 2020.

Conducting the evaluations is based on the ordering of data from highest to lowest to determine need. For example, assume there are three corridors in a state and the Average Annual Daily Traffic [AADT] in Corridor A is 157,000, the AADT for Corridor B is 450,000 and the AADT for Corridor C is 30,000. In this example, Corridor B is listed first because it has the highest AADT [450,000], its evaluation results are one, and it has the highest need. Corridor A is listed second because its AADT is 157,000 [second highest], its evaluation results are two, and it has the second highest need. Corridor C is listed third because it has the lowest AADT [30,000], its evaluation results are three and it has the lowest need. This process is repeated for all 16 indicators with data for calendar year 2000, for all 16 indicators for the change in the data between 2000 and 2020, and all 16 indicators for the percent change in the data between 2000 and 2020. There are a total of 48 evaluations compiled if all the data are present.

Higher values for the indicators represent more traffic (AADT), more congestion (LOS), more trade (dollar value of air, maritime, rail and truck cargo across POEs), more vehicles (number of passenger vehicles, trucks, buses, and rail cars across a POE), which point to both the relative importance of the corridor and its infrastructure needs. The highest value is given "first place" or a score of one and represents the highest need.

[^19]The evaluation results are summed by mode. For example, there are four indicators for highways AADT, the highway length [in miles], the level of service [LOS] and the highway capacity at peak hours. If a corridor was listed first for each indicator, its highway score would be a four [a score of one for each indicator]. This is done for Land Ports of Entry [POE - five indicators], airports [one indicator], maritime ports [two indicators] and railroads [four indicators]. The lower the score, the higher the listing. It follows that the lowest mode score represents the corridor with the greatest need for that mode.

The overall score for each corridor is then calculated by summing the five modes scores [one each for highways, POE, airports, maritime ports and railroads]. The corridor with the lowest overall score is listed first and has the highest overall need. The corridor with the second lowest overall score is listed second and has the second highest need. The corridor with the highest overall score is listed third and has the lowest overall need.

Recall there is one historical component and there are two change components (change in absolute terms and percent change). Without any adjustments, the change component has twice the impact on the final result as the historical data. It was decided that the historical values are as important as the projected changes. To accomplish equal weighting, the historical scores are multiplied by two.

## GENERAL DESCRIPTION OF NUEVO LEON'S CORRIDORS

## Corridors

Nuevo León has identified one corridor for the study and it is called Monterrey-Colombia.

## Highways

The Monterrey-Colombia corridor is composed of one highway and it is NL-01. This highway runs South-North.

## Land Ports of Entry [POE]

There is one POE in Nuevo León: Puente Internacional "Solidaridad" and it is directly connected to highway NL-01. In calendar year 2000, about 560,000 trucks and 130,000 passenger vehicles transited the Mexico-US border in Nuevo León moving south through the Puente Internacional "Solidaridad" POE.

## Airports

Nuevo León has no airports that meet the minimum criteria [designated as an international POE AND located within the 100 km of the Mexico-US border].

## Railroads

There is one railroad that operates in the Monterrey-Colombia corridor and it is the Transportación Ferroviaria Mexicana [TFM]. The TFM rail line crosses the Mexico-US border in Tamaulipas, therefore, there are no rail crossing data for Nuevo León.

## Maritime Ports

Nuevo León has no maritime ports and no plans to construct a maritime port between now and 2020.

Source: Nuevo León BINSTechnical Committee representative .

## ANALYSIS OF CORRIDOR EVALUATION RESULTS

There is only one corridor identified in Nuevo León and it is called Monterrey-Colombia. Because there is only one corridor, there are no corridor comparisons

## Historical Data

This discussion reviews highway and land POE data and results. With regard to the highways in 2000, the Monterrey-Colombia corridor averaged about 778 vehicles per day over its 118 kilometer [km] length with an average Level of Service of C.

The 560,000 trucks that crossed the Mexico-US border in 2000 in Nuevo León transported about 3.4 million tons of goods valued at about $\$ 12$ billion.

There are no maritime ports in Nuevo León; no airports that meet the minimum criteria [being within 100 km of the Mexico-US border and being designated as an international POE]; and no rail lines that cross the Mexico-US border in Nuevo León.

## Change Data

This discussion reviews highway and land POE data for both absolute changes and percent changes. With regard to absolute changes in highway data, average annual daily traffic [AADT] on the Monterrey-Colombia corridor increases 913 between calendar year 2000 and 2020 while the highway length of NL-01 remains constant. The corridor's Level of Service decreases from a C [3.619] to an F [5.619] between calendar year 2000 and 2020.

Truck crossings at land POE are projected to increase by about 450,000 between 2000 and 2020 while passenger vehicles crossing at the land POE are projected to increase by about 151,000.

With regard to percent changes between 2000 and 2020, highway AADT is projected to grow about $117 \%$; the number of truck crossing the land POE is projected to increase by about $80 \%$ and passenger vehicle crossings are projected to increase by about $117 \%$.

Table 1
Summary Corridor Results

	Corridor Scores ${ }^{1}$			Evaluation Results		
CANAMEX	A	B	C	A	B	C
Historical Data for $2000{ }^{2}$						
Highways	6			1		
Land Ports of Entry	6			1		
Airports						
Maritime Ports ${ }^{3}$						
Railroads						
Sum of Historical Scores:	12			1		
Changes Between 2000 and 2020 ${ }^{4}$						
Highways	6			1		
Land Ports of Entry	6			1		
Airports						
Maritime Ports ${ }^{3}$						
Railroads						
Sum of Change Scores:	12			1		
Overall Scores ${ }^{5}$ :	24					
Overall Result:	1					
Notes:						
1 The Corridor Scores are from the results in Tables 2, 4 and 5.   2 Historical results from Table 2. To insure equal weighting with the Changes scores, the Historical corridor scores are multiplied by two.						
3 Nuevo León has no airportsthat meet the minimum criteria.						
4 Nuevo León has no maritime ports.						
5 There are no rail data because the railroad that operates within 100 km of the Mexico-USbord er in Nuevo León does not have rail line that crosses the Mexico-US border in Nuevo León.						
6 The Changes Scores is the sum of the corridor results from the Corridor Changes [Table 4] and the corridor results from the Corridor Percent Changes [Table 5].						
7 The Overall Score is the sum of the Historical Score and the Changes Score. The Historical Data scores and the Changes Between 2000 and 2020 scores are equally weighted.						

Table 2
Corridor Data and Results For 2000

	Corridor Raw Data			Evaluation Results		
	MonterreyColombia	B	C	A	B	C
Highways						
Average Annual Daily Traffic	778			1		
Highway Length [in miles]	118.0			1		
LOS[A=1 to F3 =9]	3.619			1		
Capacity at Peak Hour						
		Highway Sc		3		
		Overall High		1		
Land Port of Entry Border Crossing						
Number trucks	561,035			1		
Total volume [tons]	3,379,785			1		
Value of goods Millions \$						
\#passenger vehicles \& buses	130,664			1		
		POE Scores		3		
		Overall POE		1		
Airports						
Total volume [tons]						
		Airport Scor				
		Overall Airp				
M aritime Ports - NONE						
Total volume [tons]						
Total number TEUs						
		Maritime Po				
		Overall Marition				
Railroads Border Crossing at POE						
Number rail cars						
Total volume [tons]						
Total Number TEUs						
Value of goods Millions\$						
		Railroad Sco				
		Overall Rail				
Total AADT in One Corridor	Share of	AADT Amon				
778	100.0\%	0.0\%	0.0\%			

Notes:
POE, Airport \& Maritime port data are assigned to Corridors based on AADT distribution.
Historical data from Nuevo León BINSTechnical Committee Representative, see Tables 6-9 for details.

Lower score represents greater need.

Table 3
Corridor Data and Results For 2020

	Corridor Raw Data			Evaluation Results		
	MonterreyColombia	B	C	A	B	C
Highways						
Average Annual Daily Traffic	1,691			1		
Highway Length [in miles]	118.0			1		
LOS[A=1 to F3 =9]	5.619			1		
Capacity at Peak Hour						
		Highway Sco		3		
		Overall High		1		
Land Port of Entry Border Crossing						
Number trucks	1,013,285			1		
Total volume [tons]	6,104,230			1		
Value of goodsMillions\$						
\#passenger vehicles \& buses	284,272			1		
		POE Scores		3		
		Overall POE		1		
Airports						
Total volume [tons]						
		Airport Scor				
		Overall Airp				
M aritime Ports - NONE						
Total volume [tons]						
Total number TEUs						
		Maritime Po				
		Overall Mar	ult			
Railroads Border Crossing at POE						
Number rail cars						
Total volume [tons]						
Total Number TEUs						
Value of goods Millions\$						
		Railroad Sco				
		Overall Railr				
Total AADT in One Corridor	Share of	AADT Among				
1,691	100.0\%	0.0\%	0.0\%			

Notes:
POE, Airport \& M aritime port data are assigned to Corridors based on AADT distribution.
Forecasts for highway data are from Nuevo León BINSTechnical Committee representative. Forecasts for POE data from the Mexican SCT and highway segment data nearest the Mexico-US border. See Tables 6 and 8 for details

Lower score represents greater need.

Table 4
Corridor Changes and Results, 2000-2020

	Corridor Raw Data			Evaluation Results		
	MonterreyColombia	B	C	A	B	C
Highways						
Average Annual Daily Traffic	914			1		
Highway Length [in miles]	0.0			1		
LOS [A =1 to F3 =9]	2.000			1		
Capacity at Peak Hour						
		Highway S		3		
		Overall Hig	sult	1		
Land Port of Entry Border Crossing						
Number trucks	452,250			1		
Total volume [tons]	2,724,445			1		
Value of goodsMillions\$						
\#passenger vehicles \& buses	153,608			1		
		POE Scores		3		
		Overall PO		1		
Airports						
Total volume [tons]						
		Airport Sco				
		Overall Air				
M aritime Ports						
Total volume [tons]						
Total number TEUs						
		Maritime P				
		Overall Ma	Result			
Railroads Border Crossing at POE						
Number rail cars						
Total volume [tons]						
Total Number TEUs						
Value of goodsMillions\$						
		Railroad S				
		Overall Ra	sult			
Total AADT in One Corridor	Share of	AADT Amon				
914	100.0\%	0.0\%	0.0\%			

Notes:
POE, Airport \& Maritime port data are assigned to Corridors based on AADT distribution.
Differences are estimated by subtracting the year 2000 data from the 2020 projections.
See Tables 6-9 for details.

Lower score represents greater need.

Table 5
Corridor Percent Changes and Results, 2000-2020

	Corridor Raw Data			$\begin{gathered} \hline \text { Evaluation } \\ \text { Results } \\ \hline \end{gathered}$		
	MonterreyColombia	B	C	A	B	C
Highways						
Average Annual Daily Traffic	117.5\%			1		
Highway Length [in miles]	0.0\%			1		
LOS [A=1 to F3 =9]	55.3\%			1		
Capacity at Peak Hour						
		Highway Scores		3		
		Overall Highway Result		1		
Land Port of Entry Border Crossing						
Number trucks	80.6\%			1		
Total volume [tons]	80.6\%			1		
Value of goods Millions\$						
\#passenger vehicles \& buses	117.6\%			1		
		POE Scores		3		
		Overall POE Result		1		
Airports						
Total volume [tons]						
		Airport Scores				
		Overall Airport Result				
M aritime Ports						
Total volume [tons]						
Total number TEUs						
		M aritime Port Score				
		Overall Maritime Result				
Railroads Border Crossing at POE						
Number rail cars						
Total volume [tons]						
Total Number TEUs						
Value of goods Millions\$						
		Railroad Scores				
		Overall Railroad Result				
Notes:   See Tables 6-9 for details.						

Table 6
Highway Data For the For the Monterrey-Colombia Corridor [Corridor A]

Highw ay Factors	$\begin{aligned} & \hline \text { Year } \\ & 2000 \end{aligned}$	$\begin{aligned} & \hline \text { Year } \\ & 2020 \end{aligned}$	Change, 2000 to 2020	
			Data	Per Cent
AADT	778	1,691	914	117.5\%
Highway Length	118.000	118.000	0.000	0.0\%
LOS[A to F]	C	E		
LOS\#	3.619	5.619	2.000	55.3\%
Capacity				
Notes:   All data are from NLWeighted Averages LOS isthe Level of Servid AADT is Average Ann LOS coding: $\mathrm{A}=1, \mathrm{~B}$   Source: Nuevo León	shown on $E=5, F O$   Committ	e.   $7, F 2=8$,   entative		

Table 7
Land Ports of Entry [POE] Crossing Data

	Puente Solidaridad	Total
Federal inspection facilities at POE?	Yes	
Southbound POE Crossing Data for $2000^{1}$		
Number trucks	561,035	561,035
Tons of goods	3,379,785	3,379,785
Value [Millions \$] moved by truck	\$12,046.3	\$12,046.3
Number of passenger vehicles	130,364	130,364
Number of buses	300	300
Number passenger vehicles \& buses	130,664	130,664
Number of rail cars		
Volume of tons moved by rail		
Number of TEUs moved by rail		
Value [Millions \$] moved by rail		
Southbound POE Crossing Data for $2020^{2}$		
Number trucks		1,013,285
Tons of goods		6,104,230
Value [Millions\$] moved by truck		
Number of passenger vehicles		
Number of buses		
Number passenger vehicles \& buses		284,272
Number of rail cars		
Volume of tons moved by rail		
Number of TEUs moved by rail		
Value [Millions \$] moved by rail		
Per Cent Change in POE Data: 2000 to 2020		
Number trucks ${ }^{3}$		80.6\%
Tons of goods ${ }^{3}$		
Value [Millions \$] moved by truck		
Number of passenger vehicles		
Number of buses		
Numb. passenger vehicles \& buses ${ }^{3}$		117.6\%
Number of rail cars		
Volume of tons moved by rail		
Number of TEUs moved by rail		
Value [Millions \$] moved by rail		
Notes		
Number of trucks = southbound trucks that cross the Mexico-US border		
Tons of goods = carried by southbound trucks that cross the Mexico -USborder. Value [Millions \$] moved by truck = value of goods moved by southbound trucks that cross the Mexico-US border.		
Number of passenger vehicles =southbound passenger vehides that cross the M exico-US border. Number of buses = southbound buses that cross the M exico-US border.		

Number passenger vehicles \& buses = sum of southbound passenger vehicles \& buses that cross the Mexico-US border.
Number of rail cars = southbound rail cars that cross the Mexico-US border.
Volume of tons moved by rail = transported by the southbound rail cars that cross the M exico-US border.
Number of TEUs moved by rail =Twenty foot Equivalent containers [TEUs] moved by rail that are southbound and cross the M exico-US border.
Value [Millions \$] moved by rail = value of goods transported by southbound rail cars that cross the Mexico-US border.
Cells are $X$ out when no totals are intended. Rail data, for example, are assigned to corridors by the BINS State Technical Committee representative. This makes railroads different from airports, maritime ports, passenger vehicles \& buses, and trucks that are summed and distributed to the corridors using the distribution of AADT.

Sources:
1 The 2000 southbound POE crossing data are derived from the Laredo - Columbia northbound crossing data provided by the Texas BINS Technical Committee representative. The southbound data specified above are the same numbers as the northbound data specified on the Texas BINS Questionnaire [Part 2].
2 The actual values for 2020 are obtained by multiplying the historical data by the growth rate.
3 The 80.6\% growth rate for truck data is based on a compound annual growth rate of $3.0 \%$ - the level specified by the M exican Secretariat of Communications and Transportation.
4 The growth rate for passenger vehicles and buses is the same as that observed for the change in Average Annual Daily Traffic [AADT] in the highway segment nearest the Mexico-US border. These AADT are obtained from the NL-01, Segment 4 of the data provided by the Nuevo Leon BINSTechnical representative.

NL-01 Segment 4 AADT in 2000:	877	1,031
NL-01 Senment 4 AADT in 2020:	1,908	$117.6 \%$

The $117.6 \%$ is used to forecast the number of border crossings for passenger vehicles and buses in 2020.

Table 8
Airport Data

There are NO AIRPORTS in Nuevo León that meet minimum criteria.

Table 9
Maritime Port Data

There are NO M ARITIME PORTS in Nuevo León.

Map 1
Monterrey-Colombia Corridor


## CORRIDOR EVALUATION SONORA RESULTS AND DATA

Corridor evaluations are conducted to determine the corridors with the greater needs. This corridor evaluation uses quantifiable data with a systematic method to evaluate transportation corridors. Corridors are combinations of modes that move people, vehicles and goods from one location to another. To facilitate the evaluation process, the computations are calculated in formulas contained in the spreadsheets that will be sent to each of the states. Each evaluation spreadsheet is tailored to each state, thus each state's evaluation spreadsheet contains unique data - even though the methodology is the same. It is envisioned that each state will use its spreadsheet to conduct corridor evaluations, at its discretion.

Overall, the evaluation is conducted by compiling data, allocating the data to corridors and comparing corridors [within a state] to one another. There are 16 indicators 1 for which we compile data for each corridor. The overall evaluation uses two broad categories of data:

1. Historical Data - data for 16 indicators for the year 2000.
2. Change Data - a combination of actual changes for the 16 indicators from 2000 to 2020 and percent changes for the same 16 indicators from 2000 to 2020.

Conducting the evaluations is based on the ordering of data from highest to lowest to determine need. For example, assume there are three corridors in a state and the Average Annual Daily Traffic [AADT] in Corridor A is 157,000, the AADT for Corridor B is 450,000 and the AADT for Corridor C is 30,000. In this example, Corridor B is listed first because it has the highest AADT [450,000], its evaluation results are one, and it has the highest need. Corridor A is listed second because its AADT is 157,000 [second highest], its evaluation results are two, and it has the second highest need. Corridor C is listed third because it has the lowest AADT [30,000], its evaluation results are three and it has the lowest need. This process is repeated for all 16 indicators with data for calendar year 2000, for all 16 indicators for the change in the data between 2000 and 2020, and all 16 indicators for the percent change in the data between 2000 and 2020. There are a total of 48 evaluations compiled if all the data are present.

Higher values for the indicators represent more traffic (AADT), more congestion (LOS), more trade (dollar value of air, maritime, rail and truck cargo across POEs), more vehicles (number of passenger vehicles, trucks, buses, and rail cars across a POE), which point to both the relative importance of the corridor and its infrastructure needs. The highest value is given "first place" or a score of one and represents the highest need.

[^20]The evaluation results are summed by mode. For example, there are four indicators for highways AADT, the highway length [in miles], the level of service [LOS] and the highway capacity at peak hours. If a corridor was listed first for each indicator, its highway score would be a four [a score of one for each indicator]. This is done for Land Ports of Entry [POE - five indicators], airports [one indicator], maritime ports [two indicators] and railroads [four indicators]. The lower the score, the higher the listing. It follows that the lowest mode score represents the corridor with the greatest need for that mode.

The overall score for each corridor is then calculated by summing the five modes scores [one each for highways, POE, airports, maritime ports and railroads]. The corridor with the lowest overall score is listed first and has the highest overall need. The corridor with the second lowest overall score is listed second and has the second highest need. The corridor with the highest overall score is listed third and has the lowest overall need.

Recall there is one historical component and there are two change components (change in absolute terms and percent change). Without any adjustments, the change component has twice the impact on the final result as the historical data. It was decided that the historical values are as important as the projected changes. To accomplish equal weighting, the historical scores are multiplied by two.

## GENERAL DESCRIPTION OF SONORA'S CORRIDORS

## Corridors

Sonora has identified one corridor for the study and it is called the Sonora Corridor.

## Highways

The Sonora corridor is composed of five highways and they are the following:

1. MX-2, runs east-west.
2. MX-8, runs south-north.
3. $M X-15$, runs south-north.
4. MX-15D, runs south-north.
5. MX-17, runs south -north

No data on Level of Service [LOS] or capacity is provided. Therefore, the level of current or future congestion on highways in Sonora cannot be established.

## Land Ports of Entry [POE]

There is a rail crossing, a pedestrian crossing, and seven POEs serving vehicles in Sonora. The names of the seven POEs that serve vehicles are the following:

1. The San Luis Rio Colorado POE [directly connected to the MX-2].
2. The San Luis Rio Colorado POE [directly connected to the MX-2].
3. The Sasabe I POE.
4. The Nogales-Deconcini POE [directly connected to the MX-15 and MX-15D].
5. The Nogales III-Mariposa POE [directly connected to the MX-15 and MX-15D].
6. The Naco POE.
7. The Agua Prieta POE [directly connected to MX-2 and MX-17].

In calendar year 2000, about 345,000 trucks and 10 million passenger vehicles and buses transited the Mexico-US border into Sonora moving through these POEs.

## Airports

Sonora DID NOT provide any airport data

## Railroads

There is a rail crossing at the Nogales POE, however, Sonora DID NOT provide any rail data.

## Maritime Ports

Sonora DID NOT provide any maritime port data

Source: The Sonora BINS Technical Committee representative provided no data for the BINS study. SourcePoint specified the Sonora Corridor, identified the highways within the corridor and compiled the highway data from the Mexican Secretariat of Communication \& Transportation. See Table 6 for details. SourcePoint compiled Sonora land POE data by using POE data submitted by the Arizona BINSTechnical Committee representative. See Table 6 for details.

## ANALYSIS OF CORRIDOR EVALUATION RESULTS

There is only one corridor identified in Sonora and it is called the Sonora Corridor. Because there is only one corridor, there are no corridor comparisons

## Historical Data

This discussion reviews highway and land POE data and results. With regard to the highways in 2000, the Sonora corridor averaged 14,474 vehicles per day over its 687 kilometer [km] length.

There were about 345,000 trucks and 10 passenger vehicles and buses that crossed the Mexico-US border in to Sonora during calendar year 2000.

No data on Level of Service [LOS] or capacity is provided. Therefore, the level of current or future congestion on Sonora highways cannot be established.

The Sonora BINS Technical Committee representative did not provide any data and DID NOT specify any airports, maritime ports, or railroads.

## Change Data

This discussion reviews highway and land POE data for both absolute changes and percent changes. With regard to absolute changes in highway data, average annual daily traffic [AADT] on the Sonora corridor increases about 11,000 between calendar year 2000 and 2020 while the highway length of all the five highways remains constant.

Truck crossings at land POEs are projected to increase by about 278,000 between 2000 and 2020, while passenger vehicles crossing at the land POEs are projected to increase by about 8 million.

With regard to percent changes between 2000 and 2020, highway AADT is projected to grow about 80 percent; the number of trucks, passenger vehicles and buses crossing the land POEs is also projected to increase by about 80 percent.

Table 1
Summary Corridor Results

	Corridor Scores ${ }^{1}$			Evaluation Results		
	A	B	C	A	B	C
Historical Data for $200{ }^{2}$						
Highways	4			1		
Land Ports of Entry	4			1		
Airports ${ }^{3}$						
Maritime Ports ${ }^{4}$						
Railroads ${ }^{5}$						
Sum of Historical Scores:	8			1		
Changes Between 2000 and 2020 ${ }^{6}$						
Highways	4			1		
Land Ports of Entry	4			1		
Airports ${ }^{3}$						
Maritime Ports ${ }^{4}$						
Railroads ${ }^{5}$						
Sum of Change Scores:	8			1		
Overall Scores${ }^{7}$ :	16					
Overall Result:	1					

## Notes:

$1 \quad$ The Corridor Scores are from the results in Tables 2, 4 and 5.
Historical results from Table 2. To insure equal weighting with the Changes scores, the Historical corridor scores are multiplied by two.
3 Sonora did not specify any airportsor provide any airport data.
$4 \quad$ Sonora did not specify any maritime portsor provide any maritime port data.
$5 \quad$ Sonora did not specify any railroads or provide any railroad crossing data.
$6 \quad$ The Changes Scores is the sum of the corridor results from the Corridor Changes [Table 4] and the corridor results from the Corridor Percent Changes [Table 5].
$7 \quad$ The Overall Score is the sum of the Historical Score and the Changes Score. The Historical Data scores and the Changes Between 2000 and 2020 scores are equally weighted.

Lower score represents greater need.

Table 2
Corridor Data and Results For 2000

	Corridor Raw Data			Evaluation Results		
	Sonora	B	C	A	B	C
Highways						
Average Annual Daily Traffic	11,520			1		
Highway Length [in miles]	784			1		
LOS [A=1 to F3 =9]						
Capacity at Peak Hour						
		Highway Scores		2		
		Overall Highway Result		1		
Land Port of Entry Border Crossing						
Number trucks	344,945			1		
Total volume [tons]						
Value of goods Millions \$						
\#passenger vehicles \& buses	10,321,419			1		
		POE Scores		2		
		Overall POE Result		1		
Airports- None Specified						
Total volume [tons]						
		Airport Scores				
		Overall Airport Result				
Maritime Ports - - None Specified						
Total volume [tons]						
Total number TEUs						
		Maritime Port Score				
		Overall Maritime Result				
Railroads Border Crossing at POE- None Specified						
Number rail cars						
Total volume [tons]						
Total Number TEUs						
Value of goods Millions\$						
		Railroad Scores				
		Overall Railroad Result				
Total AADT in One Corridor	Share of AADT Among Corridors					
11,520	100.0\%	0.0\%	0.0\%			
Notes:						
POEs are assigned to Corridors based on AADT distribution.   Historical data from Arizona BINSTechnical Committee Representative and the Mexican Secretariat of Communications and						

Table 3
Corridor Data and Results For 2020


Table 4
Corridor Changes and Results, 2000-2020


Table 5
Corridor Percent Changes and Results, 2000-2020


Table 6
Highway Data

| Summary Data for the Sonora Corridor for 2000 |  |  |  |  |  |  |  |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{array}{c}\text { Sonoyta-San } \\ \text { Luis Rio } \\ \text { Colorado } \\ \text { (MX-2) }\end{array}$ | $\begin{array}{c}\text { Santa } \\ \text { Ana- } \\ \text { Sonoyta } \\ \text { (MX-2) }\end{array}$ | $\begin{array}{c}\text { Sonoyta- } \\ \text { US Border } \\ \text { (MX-8) }\end{array}$ | $\begin{array}{c}\text { Santa } \\ \text { Ana- } \\ \text { Nogales } \\ \text { (MX 15) }\end{array}$ | $\begin{array}{c}\text { Libramiento } \\ \text { de Nogales } \\ \text { (MX 15D) }\end{array}$ | $\begin{array}{c}\text { Nacozari } \\ \text { De Garcia- } \\ \text { Agua } \\ \text { Prieta (MX } \\ \text { 17) }\end{array}$ | Total |$\}$

Sources: SourcePoint identified the Corridor and selected the highways within the corridor. AADT and highway length were obtained from data compiled by the Mexican Secretariat of Communication and Transportation

Table 7
Compiled Sonora Land Ports of Entry [POE] Crossing Data

	$\begin{aligned} & \text { San Luis } \\ & \text { Rio } \end{aligned}$	Sonoyta	Sasabe I	Nogales-	Nogales III	Naco	Agua	
	Colorado		Colorado	Deconcini	M ariposa		Prieta	Total
Federal inspection facilities at POE?	Yes							
Historical Southbound POE Crossing Data for $2000^{1}$								
Number trucks	40,348	3,840	2,652	0	254,694	9,817	33,594	344,945
Tons of goods								
Value [Millions \$] moved by truck								
Number of passenger vehicles	2,597,835	400,493	32,823	2,998,046	1,686,401	339,196	2,252,216	10,307,010
Number of buses	38	404	0	0	8,899	0	5,068	14,409
Number passenger vehicles \& buses								10,321,419
Number of rail cars								X
Volume of tons moved by rail								X
Number of TEUs moved by rail								X
Value [Millions \$] moved by rail								X
Projected Southbound POE Crossing Data for $2020{ }^{2}$								
Number trucks								623,005
Tons of goods								
Value [Millions \$] moved by truck								
Number of passenger vehicles								X
Number of buses								X
Number passenger vehicles \& buses								18,640,483
Number of rail cars								X
Volume of tons moved by rail								X
Number of TEUs moved by rail								X
Value [Millions \$] moved by rail								X
Per Cent Change in POE Data: 2000 to 2020 [Growth Rates Provided by SourcePoint]								
Number trucks ${ }^{3}$								80.6\%


	San Luis   Rio	Sonoyta	Sasabe I	Nogales-	Nogales III	Naco	Agua	
	Colorado		Colorado	Deconcini	Mariposa			
Tons of goods								
Value [Millions $\$$ ] moved by truck								
Number of passenger vehicles								
Number of buses								
  buses								
Number of rail cars								
Volume of tons moved by rail								
Number of TEUs moved by rail								
Value [Millions $\$$ moved by rail								

## Notes:

Number of trucks = southbound trucks that cross the US-M exico border
Tons of goods = carried by southbound trucks that cross the US-M exico border.
Value [Millions \$] moved by truck = value of goods moved by southbound trucks that cross the US-Mexico border.
Number of passenger vehicles =southbound passenger vehicles that cross the US-M exico border.
Number of buses = southbound buses that cross the US-M exico border.
Number passenger vehicles \& buses = sum of southbound passenger vehicles and buses that cross the US-M exico border.
Number of rail cars = southbound rail cars that crossthe US-Mexico border.
Volume of tons moved by rail = transported by the southbound rail cars that cross the US-M exico border.
Number of TEUs moved by rail =Twenty foot Equivalent containers[TEUs] moved by rail that are southbound and crossthe US-M exico border.
Value [Millions \$] moved by rail = value of goodstransported by southbound rail cars that cross the US-M exico border
Cells are $X$ out when no totals are intended. Rail data, for example, are assigned to corridors by the BINS State Technical Committee representative. This makes railroads different from airports, maritime ports, passenger vehides \& buses, and trucks that are summed and distributed to the corridors using the distribution of AADT

Sources:

 provided by the Sonora BINS representative Technical Committee
2 Calculated by Multiplying 2000 Historical Data by Growth Rates
 Sonora.

 was 11,022 or $80.6 \%$. The $80.6 \%$ is used to forecast the number of border crossings for passenger vehicles and buses in 2020.

Table 8
Airport Data

No Airports were specified by the Sonora BINS Technical Committee representative

Table 9
Maritime Port Data

No Maritime Ports were specified by the Sonora BINS Technical Committee representative.

## Sonora Border Area



## CORRIDOR EVALUATION TAMAULIPAS RESULTS AND DATA

Corridor evaluations are conducted to determine the corridors with the greater needs. This corridor evaluation uses quantifiable data with a systematic method to evaluate transportation corridors. Corridors are combinations of modes that move people, vehicles and goods from one location to another. To facilitate the evaluation process, the computations are calculated in formulas contained in the spreadsheets that will be sent to each of the states. Each evaluation spreadsheet is tailored to each state, thus each state's evaluation spreadsheet contains unique data - even though the methodology is the same. It is envisioned that each state will use its spreadsheet to conduct corridor evaluations, at its discretion.

Overall, the evaluation is conducted by compiling data, allocating the data to corridors and comparing corridors [within a state] to one another. There are 16 indicators 1 for which we compile data for each corridor. The overall evaluation uses two broad categories of data:

1. Historical Data - data for 16 indicators for the year 2000.
2. Change Data - a combination of actual changes for the 16 indicators from 2000 to 2020 and percent changes for the same 16 indicators from 2000 to 2020.

Conducting the evaluations is based on the ordering of data from highest to lowest to determine need. For example, assume there are three corridors in a state and the Average Annual Daily Traffic [AADT] in Corridor A is 157,000, the AADT for Corridor B is 450,000 and the AADT for Corridor C is 30,000. In this example, Corridor B is listed first because it has the highest AADT [450,000], its evaluation results are one, and it has the highest need. Corridor A is listed second because its AADT is 157,000 [second highest], its evaluation results are two, and it has the second highest need. Corridor C is listed third because it has the lowest AADT [30,000], its evaluation results are three and it has the lowest need. This process is repeated for all 16 indicators with data for calendar year 2000, for all 16 indicators for the change in the data between 2000 and 2020, and all 16 indicators for the percent change in the data between 2000 and 2020. There are a total of 48 evaluations compiled if all the data are present.

Higher values for the indicators represent more traffic (AADT), more congestion (LOS), more trade (dollar value of air, maritime, rail and truck cargo across POEs), more vehicles (number of passenger vehicles, trucks, buses, and rail cars across a POE), which point to both the relative importance of the corridor and its infrastructure needs. The highest value is given "first place" or a score of one and represents the highest need.

[^21]The evaluation results are summed by mode. For example, there are four indicators for highways AADT, the highway length [in miles], the level of service [LOS] and the highway capacity at peak hours. If a corridor was listed first for each indicator, its highway score would be a four [a score of one for each indicator]. This is done for Land Ports of Entry [POE - five indicators], airports [one indicator], maritime ports [two indicators] and railroads [four indicators]. The lower the score, the higher the listing. It follows that the lowest mode score represents the corridor with the greatest need for that mode.

The overall score for each corridor is then calculated by summing the five modes scores [one each for highways, POE, airports, maritime ports and railroads]. The corridor with the lowest overall score is listed first and has the highest overall need. The corridor with the second lowest overall score is listed second and has the second highest need. The corridor with the highest overall score is listed third and has the lowest overall need.

Recall there is one historical component and there are two change components (change in absolute terms and percent change). Without any adjustments, the change component has twice the impact on the final result as the historical data. It was decided that the historical values are as important as the projected changes. To accomplish equal weighting, the historical scores are multiplied by two.

## GENERAL DESCRIPTION OF TAMAULIPAS' CORRIDORS

## Corridors

Tamaulipas has identified six corridors for the study and they are called the Nuevo Laredo Corridor, the Reynosa Corridor, the Matamoros Corridor, the Miguel Alemán Corridor, the Camargo Corridor, and the Nuevo Progreso Corridor.

## Highways

The Nuevo Laredo Corridor is composed of portions of two highways: MX-2 and MX-85. The Reynosa Corridor is composed of portions of three highways: MX-2, MX-40, and MX-97. The Matamoros Corridor is composed of portions of two highways: MX-2 and MX-180. The Miguel Alemán Corridor is composed of portions of two highways: MX-2 and MX-54. The Camargo Corridor is composed of portions of two highways: MX-2 and MX-SIN NUM [SN]. The Nuevo Progreso Corridor is composed of portions of one highways: MX-2.

## Land Ports of Entry [POE]

Tamaulipas has 14 POEs on the Mexico-US border that are served by 13 bridges and one ferry. The names of the POEs are the following: Nuevo Laredo I [Puente Viejo], Nuevo Laredo II, Comercio Mundial-Puente III, Nuevo Ciudad Guerrero, Miguel Aleman, Camargo, Gustavo Diaz Ordaz [ferry crossing], Puente Reynosa, Puente Nuevo Amanecer [at Reynosa], Nuevo Progreso, Puerto MexicoPuente Nuevo [at Matamoros], Puente Viejo [at Matamoros] Los Indios-Puente Lucio Blanco and Los Tomatoes-Puente General.

In calendar year 2000, about 1.5 million trucks crossed into Tamaulipas through 10 of the land POEs and about 25.3 million passenger vehicles and buses entered Tamaulipas through all 14 land POEs.

## Airports

There are three airports in Tamaulipas that meet the minimum corridor evaluation criteria [located within 100 km of the US-Mexico border and designated as an international port of entry]. The airports are at Nuevo Laredo, Reynosa and Matamoros. In calendar year 2000 about one million tons of goods were transported at two of the three airports. Tamaulipas envisions goods transported by airplane increasing about 64\% to 1.7 million tons in 2020.

## Railroads

The Ferrocarril del Noreste [FNE] operates within Tamaulipas and has rail lines that cross the Mexico-US border at Nuevo Laredo, Reynosa, and Matamoros. Data are provided on the number of rail cars and tonnage that cross south into Tamaulipas from the US through the POE at Puente Viejo [at Matamoros], and Nuevo Laredo. In calendar year 2000, about 340,000 rail cars carrying about 28 million tons transited the POE at Puente Viejo and Nuevo Laredo.

The rail line that crosses at Nuevo Laredo is assigned to the Nuevo Laredo Corridor and the rail line that crosses at Puente Viejo is assigned to the Matamoros Corridor.

## Maritime Ports

Tamaulipas has one maritime port that meets the minimum corridor evaluation criteria [within 100 km of the US-Mexico border and designated as an international port of entry]. That port is located at Mezquital and has a channel depth of 4 meters.

In calendar year 2000, about 6,000 tons of goods and no containers were moved through the El Mezquital maritime port. Tamaulipas envisions substantial growth in the Mezquital maritime port with the channel depth increasing to 12 meters and goods shipped projected to increase to 5 million tons in 2020. This represents a growth of about $83000 \%$.

Source: Tamaulipas BINS Technical Committee representative.

## ANALYSIS OF CORRIDOR EVALUATION RESULTS

The Reynosa Corridor is listed first. The Matamoros Corridor is listed second. The Miguel Alemán Corridor is listed third. The Nuevo Laredo Corridor is listed fourth. The Nuevo Progreso Corridor is listed fifth. The Camargo Corridor is listed sixth.

The Reynosa Corridor obtains its first place listing by virtue of the fact that it is listed first with respect to the historical data, and listed second with respect to the change data. The Matamoros Corridor obtains its second place listing because it is listed second with respect to the historical data, and listed first with respect to the change data. With regard to historical data, the Reynosa Corridor
obtained one third fewer points when compared to the Matamoros Corridor [34 vs. 52]. With regard to change data, the Reynosa Corridor obtained five points more than the Matamoros Corridor [38 vs.33].

## Historical Data

This discussion reviews highway, land POE, airport, rail and maritime port data with their results. With regard to the highways, the Reynosa Corridor is listed first because it is listed first for two of the four indicators [AADT and Capacity] and second for highway length. The Reynosa Corridor's AADT is about two times larger than the \#2 Corridor [24,372 vs. 10,638]; while its capacity is $49 \%$ larger than the \#2 corridor [10,158 vs. 6,800]. Highway Length is the only indicator where the \#2 Corridor [Matamoros] is larger than the \#1 Corridor [493 vs. 407 km ].

For truck and passenger vehicle data, airport data, and maritime port data, the Reynosa Corridor is always listed first by virtue of the fact that those data are allocated based on the distribution of AADT amongst the Corridors. As noted above, the Reynosa Corridor is listed first with respect to AADT. Regarding railroads, the Nuevo Laredo Corridor is listed first, the Matamoros Corridor second and all the other corridors are tied for third because there are only two corridors with railroads assigned to them. The rail crossings data at Nuevo Laredo are larger than the rail crossing data at Puente Viejas [Matamoros].

## Change Data

This discussion reviews highway, land POE, airport and maritime port data for both absolute changes and percent changes. With regard to absolute changes in highway data, the Reynosa Corridor is listed first for two of the four indicators [AADT \& Capacity] and tied for first for Highway Length with the other corridors [as there was no change in highway length for any of the six corridors]. The Matamoros Corridor is listed first for LOS, tied for first for Highway Length, and listed second for AADT.

For truck data, passenger vehicles and bus data, airport data and maritime port data, the Reynosa Corridor is always listed first by virtue of the fact that its 2000 year data is larger than the other three corridors and all the corridors use the same growth rates. Regarding railroads, the Nuevo Laredo is listed first and the Matarmoros Corridor is listed second because there were larger rail crossing increases at Nuevo Laredo.

With regard to percent changes in highway data, the Reynosa Corridor is listed first in AADT growth [with $174.7 \%$ ]; first for growth in capacity at peak hours [with $120.8 \%$ ] and tied for first with regard to Highway Length [there was no change for all six corridors]. The Matamoros Corridor is listed first for LOS, tied for first for Highway Length and listed second for Capacity.

For truck data, passenger vehicles and bus data, airport data and maritime port data, all three corridors are tied for first because each corridor has the same growth rate for each mode [80.6\% for trucks, $148.2 \%$ for passenger vehicles and buses, $63.9 \%$ for airports, and $83,233 \%$ for maritime ports]. Regarding railroads, the Nuevo Laredo and Matamoras Corridors are tied for first because they are the only two corridor with a growth rate, and it is 80.6 percent.

Table 1
Summary Corridor Results

	Corridor Scores ${ }^{1}$						Evaluation Results					
	A	B	C	D	E	F	A	B	C	D	E	F
	$\begin{aligned} & \hline \text { Nuevo } \\ & \text { Laredo } \end{aligned}$	Reynosa	Matamoros	Miguel Alemán	Camargo	Nuevo Progreso						
Historical Data for $2000{ }^{2}$												
Highways	28	14	28	28	32	36	2	1	2	2	5	6
Land Ports of Entry	16	4	8	12	24	20	4	1	2	3	6	5
Airports ${ }^{3}$	8	2	4	6	12	10	4	1	2	3	6	5
Maritime Ports ${ }^{4}$	8	2	4	6	12	10	4	1	2	3	6	5
Railroads ${ }^{5}$	4	12	8	12	12	12	1	3	2	3	3	3
Sum of Historical Scores:	64	34	52	64	92	88	3	1	2	3	6	5
Changes Betw een 2000 and 2020 ${ }^{6}$												
Highways	27	15	20	18	32	26	5	1	3	2	6	4
Land Ports of Entry	12	4	6	8	14	10	5	1	2	3	6	4
Airports ${ }^{3}$	6	2	3	4	7	5	5	1	2	3	6	4
Maritime Ports ${ }^{4}$	6	2	3	4	7	5	5	1	2	3	6	4
Railroads ${ }^{5}$	4	12	6	12	12	12	1	3	2	3	3	3
Sum of Change Scores:	55	35	38	46	72	58	4	2	1	3	6	5
Overall Scores7	119	69	90	110	164	146						
Overall Result:	4	1	2	3	6	5						

Notes:
${ }^{1}$ The Corridor Scores are the Evaluation Results in Tables 2, 4 and 5.
2 Historical Scores from Table 2. To insure equal weighting with the Changes scores, the Historical corridor scores are multiplied by two.
${ }^{3}$ Tamaulipas has three airports within 100 km of the US-Mexico border that are designated as international ports of entry
${ }^{4}$ Tamaulipashasone maritime port located within 100 km of the US-Mexico border that is designated as an international port of entry.
5 The Ferrocarril del Noreste [FNE] operates in Tamaulipas and crosses the Mexico-US border at three POE. Rail data was provided for two POE and rail lines were assigned to the Nuevo Laredo and Matamoros Corridors.
6 The Changes Scores is the sum of the Corridor Scores from Table 4 [Corridor Changes] and the Corridor Scores from Table 5 [Corridor Percent Changes].
7 The Overall Score is the sum of the Historical Score and the Changes Score. The Historical Data scores and the Changes Between 2000 and 2020 scores are equally weighted.

Lower Score represents greater need.

Table 2
Corridor Data For 2000

	Corridor Raw Data						Evaluation Results					
	A	B	C	D	E	F	A	B	C	D	E	F
	Nuevo Laredo	Reynosa	Matamoros	Miguel Alemán	Camargo	Nuevo Progreso						
Highways												
Average Annual Daily Traffic	8,855	24,372	10,638	9,904	7,480	8,290	4	1	2	3	6	5
Highway Length [in km]	346.7	406.8	492.5	170.8	117.1	28.0	3	2	1	4	5	6
LOS[A=1 to $\mathrm{F}=9$ ]	2.196	2.485	2.128	2.407	2.763	3.357	5	3	6	4	2	1
Capacity at Peak Hour	5,981	10,158	4,766	5,600	5,600	2,800	2	1	5	3	3	6
				Highway Scores			14	7	14	14	16	18
				Overall Highw ay Results			2	1	2	2	5	6
Land Port of Entry Border   Crossing												
Number trucks	195,684	538,602	235,097	218,870	165,309	183,205	4	1	2	3	6	5
Total volume [tons]												
Value of goods Millions \$												
\#passenger vehicles \& buses	3,216,319	8,852,628	3,864,137	3,597,413	2,717,075	3,011,221	4	1	2	3	6	5
				POE Scores			8	2	4	6	12	10
				Overall POE Results			4	1	2	3	6	5
Airports												
Total volume [tons]	131,507	361,960	157,994	147,089	111,094	123,121	4	1	2	3	6	5
				Airport Scores			4	1	2	3	6	5
				Overall Airport Results			4	1	2	3	6	5
Maritime Ports												
Total volume [millionstons]	764	2,103	918	855	645	715	4	1	2	3	6	5
Total number TEUs												
				Maritime Port Score			4	1	2	3	6	5
				Overall Maritime Results			4	1	2	3	6	5


	Corridor Raw Data						Evaluation Results					
	A	B	C	D	E	F	A	B	C	D	E	F
	Nuevo Laredo	Reynosa	Matamoros	Miguel Alemán	Camargo	Nuevo Progreso						
Railroads Border Crossing at POE ${ }^{1}$												
Number rail cars	250,069		89,623				1	3	2	3	3	3
Total volume [tons]	20,005,520		8,066,070				1	3	2	3	3	3
Total Number TEUs												
Value of goods Millions\$												
				Railroad	res		2	6	4	6	6	6
				Overall R	road Resu		1	3	2	3	3	3
Total AADT in Six Corridors	Share of AADT Among Corridors											
69,539	12.7\%	35.0\%	15.3\%	14.2\%	10.8\%	11.9\%						

Notes:
POE, Airport \& M aritime port data are assigned to Corridors based on AADT distribution.
Historical data from Tamaulipas BINS Technical Committee Representative, see Tables 6-9 for details.
1 The Ferrocarril del Noreste [FNE] operates in Tamaulipas and crosses the Mexico-US border at three ports of entry. Rail data was provided for two POE and rail lines were assigned to the Nuevo Laredo and Matamoros Corridors.

Lower Score represents greater need.

Table 3
Corridor Data and Results for 2020

	Corridor Raw Data						Evaluation Results					
	A	B	C	D	E	F	A	B	C	D	E	F
	Nuevo Laredo	Reynosa	Matamoros	Miguel Alemán	Camargo	Nuevo Progreso						
Highways												
Average Annual Daily Traffic	17,999	66,955	22,803	21,799	15,620	20,147	5	1	2	3	6	4
Highway Length [in km]	346.7	406.8	492.5	170.8	117.1	28.0	3	2	1	4	5	6
LOS[A=1 to F =9]	1.702	1.317	1.718	1.835	1.208	2.000	4	5	3	2	6	1
Capadity at Peak Hour	10,905	22,430	8,888	12,360	11,064	6,000	4	1	5	2	3	6
				Highway Scores			16	9	11	11	20	17
				Overall Highway Results			4	1	3	3	6	5
Land Port of Entry Border   Crossing												
Number trucks	302,179	1,124,085	382,826	365,980	262,243	338,242	5	1	2	3	6	4
Total volume [tons]												
Value of goods Millions\$												
\#passenger vehicles \& buses	6,825,403	25,390,060	8,647,018	8,266,510	5,923,357	7,639,977	5	1	2	3	6	4
				POE Scores			10	2	4	6	12	8
				Overall POE Results			5	1	2	3	6	4
Airports												
Total volume [tons]	184,244	685,375	233,416	223,145	159,894	206,232	5	1	2	3	6	4
				Airport Scores			5	1	2	3	6	4
				Overall Airport Results			5	1	2	3	6	4
Maritime Ports												
Total volume [millionstons]	544,357	2,024,974	689,639	659,292	472,415	609,323	5	1	2	3	6	4
Total number TEUs												
				M aritime Port Score			5	1	2	3	6	4
				Overall Maritime Results			5	1	2	3	6	4



Notes:
POE, Airport \& Maritime port data are assigned to Corridors based on AADT distribution.
The Ferrocarril del Noreste [FNE] operates in Tamaulipas and crosses the Mexico-US border at three ports of entry. Rail data was provided for two POE and rail lines were assigned to the Nuevo Laredo and Matamoros Corridors.

Lower Score representsgreater need.

Table 4
Corridor Changes and Results, 2000-2020

	Corridor Raw Data						Evaluation Results					
	A	B	C	D	E	F	A	B	C	D	E	F
	Nuevo Laredo	Reynosa	Matamoros	Miguel Alemán	Camargo	Nuevo Progreso						
Highways												
Average Annual Daily Traffic	9,144	42,583	12,164	11,895	8,140	11,857	5	1	2	3	6	4
Highway Length [in km]	0	0	0	0	0	0	1	1	1	1	1	1
LOS[A=1 to F =9]	-0.49	-1.17	-0.41	-0.57	-1.56	-1.36	2	4	1	3	6	5
Capacity at Peak Hour	4,924	12,272	4,122	6,760	5,464	3,200	4	1	5	2	3	6
				Highw ay Scores			12	7	9	9	16	16
				Overall Highway Results			4	1	3	3	6	6
Land Port of Entry Border   Crossing												
Number trucks	118,264	550,733	157,324	153,844	105,275	153,348	5	1	2	3	6	4
Total volume [tons]												
Value of goods Millions \$												
\#passenger vehicles \& buses	3,573,676	16,641,983	4,754,011	4,648,839	3,181,184	4,633,838	5	1	2	3	6	4
				POE Scores			10	2	4	6	12	8
				Overall POE Results			5	1	2	3	6	4
Airports												
Total volume [tons]	62,964	293,214	83,761	81,908	56,049	81,643	5	1	2	3	6	4
				Airport Scores			5	1	2	3	6	4
				Overall Airport Results			5	1	2	3	6	4
M aritime Ports												
Total volume [millionstons]	476,763	2,220,204	634,232	620,201	424,401	618,199	5	1	2	3	6	4
Total number TEUs												
				Maritime Port Score			5	1	2	3	6	4
				Overall M aritime Results			5	1	2	3	6	4


	Corridor Raw Data						Evaluation Results					
	A	B	C	D	E	F	A	B	C	D	E	F
	Nuevo Laredo	Reynosa	Matamoros	Miguel Alemán	Camargo	Nuevo Progreso						
Railroads Border Crossing at POE ${ }^{1}$												
Number rail cars	201,581		72,245				1	3	2	3	3	3
Total volume [tons]	16,126,450		6,502,059				1	3	2	3	3	3
Total Number TEUs												
Value of goods Millions\$												
				Railroad	res		2	6	4	6	6	6
				Overall R	road Result		1	3	2	3	3	3
Total AADT in Six Corridors	Share of AADT Among Corridors											
95,784	9.5\%	44.5\%	12.7\%	12.4\%	8.5\%	12.4\%						

## Notes:

POE, Airport \& Maritime port data are assigned to Corridors based on AADT distribution.
Differences are estimated by subtracting the year 2000 data from the 2020 projections., see Tables 6-9 for details.
The Ferrocarril del Noreste [FNE] operates in Tamaulipas and crosses the Mexico-US border at three ports of entry. Rail data was provided for two POE and rail lines were assigned to the Nuevo Laredo and Matamoros Corridors.

Lower Score representsgreater need.

Table 5
Corridor Percent Changes and Results, 2000-2020

	Corridor Raw Data						Evaluation Results					
	A	B	C	D	E	F	A	B	C	D	E	F
	$\begin{aligned} & \hline \text { Nuevo } \\ & \text { Laredo } \end{aligned}$	Reynosa	Matamoros	Miguel Alemán	Camargo	Nuevo Progreso						
Highways												
Average Annual Daily Traffic	103.3\%	174.7\%	114.3\%	120.1\%	108.8\%	143.0\%	6	1	4	3	5	2
Highway Length [in km]	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	1	1	1	1	1	1
LOS[A=1 to F = 9]	-22.5\%	-47.0\%	-19.3\%	-23.8\%	-56.3\%	-40.4\%	2	5	1	3	6	4
Capacity at Peak Hour	82.3\%	120.8\%	86.5\%	120.7\%	97.6\%	114.3\%	6	1	5	2	4	3
				Highway Scores			15	8	11	9	16	10
				Overall Highway Results			5	1	4	2	6	3
Land Port of Entry Border   Crossing       Number												
Number trucks	80.6\%	80.6\%	80.6\%	80.6\%	80.6\%	80.6\%	1	1	1	1	1	1
Total volume [tons]												
Value of goods Millions \$												
\#passenger vehicles \& buses	148.2\%	148.2\%	148.2\%	148.2\%	148.2\%	148.2\%	1	1	1	1	1	1
				POE Scores			2	2	2	2	2	2
				Overall POE Results			1	1	1	1	1	1
Airports												
Total volume [tons]	63.9\%	63.9\%	63.9\%	63.9\%	63.9\%	63.9\%	1	1	1	1	1	1
				Airport Scores			1	1	1	1	1	1
				Overall Airport Results			1	1	1	1	1	1
Maritime Ports												
Total volume [millionstons]	83233\%	83233\%	83233\%	83233\%	83233\%	83233\%	1	1	1	1	1	1
Total number TEUs												
				Maritime Port Score			1	1	1	1	1	1
				Overall Maritime Results			1	1	1	1	1	1


	Corridor Raw Data						Evaluation Results					
	A	B	C	D	E	F	A	B	C	D	E	F
	$\begin{aligned} & \hline \text { Nuevo } \\ & \text { Laredo } \end{aligned}$	Reynosa	Matamoros	Miguel Alemán	Camargo	Nuevo Progreso						
Railroads Border Crossing at POE ${ }^{1}$												
Number rail cars	80.6\%		80.6\%				1	3	1	3	3	3
Total volume [tons]	80.6\%		80.6\%				1	3	1	3	3	3
Total Number TEUs												
Value of goods Millions \$												
				Railroad	res		2	6	2	6	6	6
				Overall R	oad Results		1	3	1	3	3	3
Notes:   POE, Airport \& M aritime port data are assigned to Corridors based on AADT distribution.   See Tables 6-9 for details.   1 The Ferrocarril del Noreste [FNE] operates in Tamaulipas and crosses the Mexico-USborder at three ports of entry. Rail data was provided for two POE and rail lines were assigned to the Nuevo Laredo and Matamoros Corridors.												

Table 6
Highway Data


Weighted Average LOS:	0.3	2.2	2.4	0.2	1.7	1.8
Capacity:	2,800	2,800	5,600	6,000	6,360	12,360
Summary Data for the Camargo Corridor						
	Year 2000			Y ear 2020		
	M X-2	M X-SN	Total	M X-2	M X-SN	Total
AADT:	5,178	2,302	7,480	10,813	4,807	15,620
Highw ay Length:	52.1	65.0	117.1	52.1	65.0	117.1
LOS:	B	C	B	A	A	A
LOS \#.	2.5	3.0		1.5	1.0	
Weighted Average LOS:	1.1	1.7	2.8	0.7	0.6	1.2
Capacity:	2,800	2,800	5,600	5,064	6,000	11,064
Summary Data for the Nuevo Progreso Corridor						
	Year 2000			Year 2020		
	M X-2		Total	M X-2		Total
AADT:	8,290		8,290	20,147		20,147
Highw ay Length:	28.0		28.0	28.0		28.0
LOS:	C		C	B		B
LOS \#.	3.4			2.0		2.0
Weighted Average LOS:	3.4		3.4	2.0		
Capacity:	2,800		2,800	6,000		6,000
LOS coding: $\quad \mathrm{A}=1, \mathrm{~B}=2, \mathrm{C}=3, \mathrm{D}=4, \mathrm{E}=5, \mathrm{~F}=6$						

Table 7
Land Ports of Entry [POE] Crossing Data

Corridor ID ${ }^{6}$	A	B	C	D	E	F	G	H	I	J	K	L	M	N	
Federal inspection facilities at POE?	Yes	Total													
Southbound POE Crossing Data for $2000{ }^{1}$															
Number trucks	2,656	8,247	981,503	0	10,342	24,856	0	5,413	312,462	21,813	1,298	0	45,832	122,345	1,536,767
Tons of goods															
Value [Millions $\$]$ moved by truck															
Number of passenger vehicles	1,728,043	5,364,663	81,119	0	1,178,056	636,998	0	5,371,476	2,230,731	1,114,920	2,324,118	2,555,000	702,291	1,823,702	25,111,117
Number of buses	284	38,180	130	0	3,464	97	0	24,686	4,703	390	744	0	5,697	69,301	147,676
Number passenger vehicles \& buses															25,258,793
Number of rail cars 2	250,069											89,623			X
Volume of tons moved by rail ${ }^{2}$	20,005,520											8,066,070			X
Number of TEUs moved by rail															X
Value [Millions \$] moved by rail															X
Southbound POE Crossing Data for $2020^{3}$															
Number trucks															2,775,555
Tons of goods															
Value [Millions \$] moved by truck															
Number of passenger vehicles															
Number of buses															


Corridor ID ${ }^{6}$	A	B	C	D	E	F	G	H	I	J	K	L	M	N	
Southbound POE Crossing Data for $2020{ }^{3}$															
Number passenger vehides \& buses															62,692,324
Number of rail cars	451,650											161,868			X
Volume of tons moved by rail	36,131,970											14,568,129			X
Number of TEUs moved by rail															X
Value [Millions \$] moved by rail															X
Percent Change in POE Data: 2000 to 2020															
Number trucks ${ }^{4}$															80.6\%
Tons of goods															
Value [Millions \$] moved by truck															
Number of passenger vehicles															X
Number of buses															X
Number passenger vehides \& buses ${ }^{5}$															148.2\%
Number of rail cars	80.6\%											80.6\%			X
Volume of tons moved by rail	80.6\%											80.6\%			X
Number of TEUS moved by rail															X
Value [Millions   \$] moved by rail															X

## Notes:

Number of trucks = southbound trucks that cross the Mexico-US border
Tons of goods = carried by southbound trucks that cross the Mexico-USborder.
Value [Millions \$] moved by truck = value of goods moved by southbound trucks that cross the Mexico-US border.
Number of passenger vehicles =southbound passenger vehicles that cross the Mexico-US border.
Number of buses = southbound buses that cross the Mexico-US border.

Number passenger vehides \& buses =sum of southbound passenger vehides and buses that cross the Mexico-USborder.
Number of rail cars=southbound rail cars that cross the Mexico-USborder.
Volume of tons moved by rail = transported by southbound rail cars that cross the Mexico-US border.
Number of TEUs moved by rail =Twenty foot Equivalent containers [TEUs] moved by rail that are southbound and cross the Mexico-USborder.
Value [Millions $\$$ ] moved by rail = value of goods transported by southbound rail cars that cross the Mexico-USborder.
Cells are X out when no totals are intended. Rail data, for example, are assigned to corridors by the BINSState Technical Committee representative. This makes railroads different from airports, maritime ports, passenger vehicles \& buses, and trucks that are summed and distributed to the corridors using the distribution of AADT.

Sources:
1 From the Tamaulipas BINS Technical Committee representative.
2 Derived my multiplying the 2000 data by the appropriate growth rate.
3 Rail data in Nuevo Laredo cross at the rail bridge that is located west of Nuevo Laredo I. For this study, the rail data are assigned to the Nuevo Laredo I POE.
4 Based on a 3.0\% compound annual growth rate provided by the Mexican Secretariat of Communications and Transportation.
5 This growth rate is from the growth rate in AADT for the first segment of the five highways that are directly connected to the five land POE. Together, the five highways AADT increases 33,488 between 2000 and 2020 - a 148.2\% increase.
6 Corridor ID translates as follows
A Nuevo Laredo
B Comercio Mundial [Laredo]
C Nueva Cd. Guerrero
D Miguel Alemán
E Camargo
F Gustavo Díaz Ordaz
G Puente Reynosa
H Puente Nuevo Amanecer [Reynosa]
I Nuevo Progreso
J Puerto MX- Puente Nuevo [Matamoros]
K Puente Viejo [Matamoros]
L Los IndiosPuente Lucio Blanco [Matamoros]
M LosTomates-Puente General [Matamoros]

Table 8
Airport Data

	Nuevo Laredo	Reynosa	Matamoros	Total
Within 100 km of the US-M exico Border?	Yes	Yes	Yes	
Designated as an International POE?	Yes	Yes	Yes	
Historical Data for 2000				
Longest runway length, in meters	2,000		2,300	2,300
Tons of goods exported \& imported	1,022,608		10,157	1,032,765
Airport served by railroad facility?	No	No	No	X
If yes, name of railroad				X
On-land movement of air freight	X	X	X	X
Share of goods moved by truck				X
Share of goods moved by railroad				X
Projections for 2020				
Longest runway length				
Date becomes operational				X
Tons of goods exported \& imported	1,675,662		16,643	1,692,305
Airport served by railroad facility?	No	No	No	X
If yes, name of railroad				X
On-land movement of air freight	X	X	X	X
Share of goods moved by truck				
Share of goods moved by railroad				
Percent Change: 2000 to 2020				
Longest runway length				
Tons of goods exported \& imported				63.9\%
Source: Tamaulipas BINS Technical Committee representative.				

Table 9
Maritime Port Data

	Port at El Mezquital			
Within 100 km of the US-M exico Border?	Yes			
Designated as an International POE?	Yes			
	2000	2020	Changes 2000 to 2020	
			Absolute	Percent
Main Channel Depth, in meters	4.0	12.0	8.0	200.0\%
Total tons of goods exported \& imported ${ }^{1}$	6,000	5,000,000	4,994,000	83233.3\%
Total number TEUs exported \& imported				
Maritime ports served by railroad facility?	No	Yes		
If yes, name of railroad				
On-land movement of air freight				
Share of goods moved by truck		60.0\%		
Share of goods moved by railroad		40.0\%		
Notes:   1 metric tons   Puerto de Altamira and Puerto de Tampico are not located within 100 km of the Mexico-USborder.   So urces: Tamaulipas BINS Technical Committee representative.				



## TAMAULIPAS HIGHWAY SUMMARY

## Methodology For Calculating Corridor Averages for Average Annual Daily Traffic [AADT], Level of Service [LOS], and Peak Hour Traffic Carrying Capacity

Corridor totals for highways are obtained for highway length, AADT, LOS and Peak Hour Traffic Carrying Capacity. The corridor total for each of these indicators is obtained by adding the data for each of the highways assigned to the corridor. The State BINS Technical Committee representative assigned the highways to the corridors. Each of the compilations for each of the indicators is now reviewed.

Highway Length—the length of each highway within the 100 km limit. The length is obtained for each highway by subtracting the beginning mile marker, from the last mile marker. If segments are omitted, those segments and their data are omitted from the highway total. The highway length for the entire corridor is obtained by summing the highway length for each highway in the corridor.

Weighted Average—an average in which each of the observations is multiplied [or "weighted"] by a factor before calculations. In addition, these weights sum to unity or one [1]. Weighted averages are used so that short and long segments of roadway are counted proportionately in calculating the average for the entire highway.

Average Annual Daily Traffic-the weighted average AADT for each highway is obtained in several steps. Step 1: obtain the segment weights by dividing each segment length by the total highway length. The percent of the highway contained in the segment under investigation is the highway weight. Step 2: This highway weight is then multiplied by the AADT for that segment to obtain the weighted AADT for the segment. Step 3: The weighted AADT for all the segments are summed to obtain the weighted average AADT for the highway. The weighted average AADT for all the highways in the corridor are then summed to obtain the Corridor Total AADT.

Level of Service-the weighted average LOS for each highway is calculated in the same manner as that used for AADT. A major difference is that LOS is provided in the letters A, B, C, D, E, F0, F1, F2 and F3. These letters are converted to numbers using the following system, $A=1, B=2, C=3, D=4, E=5$, $F 0=6, F 1=7, F 2=8$, and F3=9. After the conversions the following steps are used to calculate LOS for each highway. Step 1: obtain the segment weights by dividing each segment length by the total highway length. The percent of the highway contained in the segment under investigation is the highway weight. Step 2: This highway weight is then multiplied by the LOS number for that segment to obtain the weighted LOS number for the segment. Step 3: The weighted LOS number for all the segments are summed to obtain the weighted average LOS for the highway. The weighted average LOS number for all the highways in the corridor are then summed to obtain the Corridor Total LOS.

Peak Hour Traffic Carrying Capacity [PCAP]—the weighted average PCAP for each highway is obtained in several steps. Step 1: obtain the segment weights by dividing each segment length by the total highway length. The percent of the highway contained in the segment under investigation is the highway weight. Step 2: This highway weight is then multiplied by the PCAP for that segment to obtain the weighted PCAP for the segment. Step 3: The weighted PCAP for all the segments are summed to obtain the weighted average PCAP for the highway. The weighted average PCAP for all the highways in the corridor are then summed to obtain the Corridor Total PCAP.

Table 9												
Highway Data Compiled Into Corridor Form												
Used in Table 5 of Corridor Evaluation for Tamaulipas												
Segment Length is the Basis for Estimating the Weighted Average for AADT, LOS and Capacity												
Summary Data for the Reynosa Corridor												
	Calendar Year 2000						Calendar Year 2020					
	M X-2	MX-40	M X-97	Total			MX-2	MX-40	MX-97	Total		
AADT:	11,327	9,972	3,072	24,372			26,232	31,623	9,100	66,955		
Highway Length:	66.7	225.0	115.1	406.8			66.7	225.0	115.1	406.8		
LOS:	B	B	B	B			A	A	A	A		
LOS \#.	2.3	2.8	2.0				1.5	1.4	1.0			
Weighted Average LOS:	0.4	1.5	0.6	2.5			0.3	0.8	0.3	1.3		
Capacity:	3,358	4,000	2,800	10,158			6,930	7,500	8,000	22,430		
	Summary Data for the Nuevo Laredo Corridor						Summary Data for the M atamoros Corridor					
	Calendar Year 2000			Calendar Year 2020			Calendar Year 2000			Calendar Year 2020		
	M X-2	MX-85	Total	M X-2	MX-85	Total	MX-2	M X-180	Total	MX-2	M X-180	Total
AADT:	1,558	7,297	8,855	3,254	14,745	17,999	6,877	3,761	10,638	15,319	7,484	22,803
Highway Length:	118.7	228.0	346.7	118.7	228.0	346.7	76.0	416.5	492.5	76.0	416.5	492.5
LOS:	B	B	B	B	A	A	C	A	B	B	A	A
LOS \#.	2.0	2.3		2.0	1.5		3.0	2.0		2.0	1.7	
Weighted Average LOS:	0.7	1.5	2.2	0.7	1.0	1.7	0.5	1.7	2.1	0.3	1.4	1.7
Capacity:	2,800	3,181	5,981	4,000	6,905	10,905	2,411	2,355	4,766	4,000	4,888	8,888
LOS coding: $\mathrm{A}=1, \mathrm{~B}=2, \mathrm{C}=3, \mathrm{D}=4, \mathrm{E}=5, \mathrm{~F}=6$												


Highway Data Compiled Into Corridor Form												
Used in Table 5 of Corridor Evaluation for Tamaulipas												
Segment Length is the Basis for Estimating the Weighted Average for AADT, LOS and Capacity												
	Summary Data for the Miguel Alemán Corridor						Summary Data for the Camargo Corridor					
	Calendar Year 2000			Calendar Year 2020			Calendar Year 2000			Calendar Year 2020		
	M X-2	MX-54	Total	M X-2	MX-54	Total	MX-2	MX-S.N.	Total	MX-2	MX-S.N.	Total
AADT:	3,030	6,874	9,904	6,327	15,472	21,799	5,178	2,302	7,480	10,813	4,807	15,620
Highway Length:	14.6	156.2	170.8	14.6	156.2	170.8	52.1	65.0	117.1	52.1	65.0	117.1
LOS:	C	B	B	B	A	A	B	C	B	A	A	A
LOS \#.	3	2		2	2		2	3		1	1	
Weighted   Average LOS:	0.3	2.2	2.4	0.2	1.7	1.8	1.1	1.7	2.8	0.7	0.6	1.2
Capacity:	2,800	2,800	5,600	6,000	6,360	12,360	2,800	2,800	5,600	5,064	6,000	11,064
	Summary Data for the Nuevo Progreso Corridor											
	Calendar Year 2000			Calendar Year 2020								
	MX-2		Total	M X-2		Total						
AADT:	8,290		8,290	20,147		20,147						
Highway Length:	28.0		28.0	28.0		28.0						
LOS:	C		C	B		B						
LOS \#.	3			2								
Weighted Average LOS:	3.4		3.4	2.0		2.0						
Capacity:	2,800		2,800	6,000		6,000						
LOS coding: $\mathrm{A}=1, \mathrm{~B}=2, \mathrm{C}=3, \mathrm{D}=4, \mathrm{E}=5, \mathrm{~F}=6$												



Tamaulipas Highw ay Summary

	The Matamoros Corridor: Calendar Year 2000 Data													
	MX-2							MX-180						
	Within 100 km of the US-M exico Border?				Y			Within 100 km of the US-M exico Border?				Y		
	Serves an International POE?				Y			Serves an International POE?				Y		
Seg-	Begin	End		Avg Ann	Level of Service		Peak Hr	Begin	End		Avg Ann	Level of Service		Peak Hr
ment	Post	Post	Length	Daily	A to	1 to	Traffic	Post	Post	Length	Daily	A to	1 to	Traffic
\#	km	km	km	Traffic	F	6	Capacity	km	km	km	Traffic	F	6	Capacity
1	0.000	37.000	37.000	4,512	C	3	2,000	0.000	26.000	26.000	4,887	A	1	2,800
2	37.000	76.000	39.000	9,121	C	3	2,800	26.000	59.000	33.000	4,121	A	1	2,800
3								59.000	81.000	22.000	3,965	B	2	2,800
4								81.000	112.000	31.000	6,215	B	2	2,800
5								112.000	139.000	27.000	6,317	B	2	2,800
6								139.000	185.000	46.000	4,977	C	3	2,800
7								185.000	271.000	86.000	2,400	B	2	2,000
8								271.000	300.250	29.250	2,275	B	2	2,000
9								300.250	347.500	47.250	2,415	B	2	2,000
10								347.500	380.500	33.000	2,872	B	2	2,000
11								380.500	416.500	36.000	3,950	B	2	2,000
		Sum	76.000	13,633		6	4,800		Sum	416.500	44,394		21	26,800
		Estimating the Weighted Averages for M X-2							Estimating the Weighted Averages for MX-180					
		Segment	Weight	AADT	Level of Service		Capacity		Segment	Weight	AADT	Level of Service		Capacity
		1	48.7\%	2,197		1.461	974		1	6.2\%	305		0.062	175
		2	51.3\%	4,681		1.539	1,437		2	7.9\%	327		0.079	222
									3	5.3\%	209		0.106	148
									4	7.4\%	463		0.149	208
									5	6.5\%	410		0.130	182
									6	11.0\%	550		0.331	309
									7	20.6\%	496		0.413	413
									8	7.0\%	160		0.140	140
									9	11.3\%	274		0.227	227
									10	7.9\%	228		0.158	158
									11	8.6\%	341		0.173	173
		Sum	100.0\%	6,877	C	3.000	2,411		Sum	100.0\%	3,761	A	1.969	2,355
		LOS coding: $\mathrm{A}=1, \mathrm{~B}=2, \mathrm{C}=3, \mathrm{D}=4, \mathrm{E}=5, \mathrm{~F}=6$												
	Source:	Tamaulipas BINS Technical Committee representative												

Tamaulipas Highw ay Summary

	The Matamoros Corridor: Calendar Year 2020 Data													
	MX-2							MX-180						
	Within 100 km of the US-M exico Border?				Y			Within 100 km of the US-M exico Border?				Y		
	Serves an International POE?				Y			Serves an International POE?				Y		
Seg-	Begin	End		Avg Ann	Level of Service		Peak Hr	Begin	End		Avg Ann	Level of Service		Peak Hr
ment	Post	Post	Length	Daily	A to	1 to	Traffic	Post	Post	Length	Daily	A to	1 to	Traffic
\#	km	km	km	Traffic	F	6	Capacity	km	km	km	Traffic	F	6	Capacity
1	0.000	37.000	37.000	8,102	B	2	4,000	0.000	26.000	26.000	9,724	A	1	6,000
2	37.000	76.000	39.000	22,166	B	2	4,000	26.000	59.000	33.000	8,200	A	1	6,000
3								59.000	81.000	22.000	7,890	A	1	6,000
4								81.000	112.000	31.000	12,367	A	1	6,000
5								112.000	139.000	27.000	12,569	A	1	6,000
6								139.000	185.000	46.000	9,903	B	2	6,000
7								185.000	271.000	86.000	4,775	B	2	4,000
8								271.000	300.250	29.250	4,527	B	2	4,000
9								300.250	347.500	47.250	4,805	B	2	4,000
10								347.500	380.500	33.000	5,715	B	2	4,000
11								380.500	416.500	36.000	7,860	B	2	4,000
		Sum	76.000	30,268		4	8,000		Sum	416.500	88,335		17	56,000
		Estimating the Weighted Averages for MX-2							Estimating the Weighted Averages for MX-180					
		Segment	Weight	AADT	Level of Service		Capacity		Segment	Weight	AADT	Level of Service		Capacity
		1	48.7\%	3,944		0.974	1,947		1	6.2\%	607		0.062	375
		2	51.3\%	11,375		1.026	2,053		2	7.9\%	650		0.079	475
									3	5.3\%	417		0.053	317
									4	7.4\%	920		0.074	447
									5	6.5\%	815		0.065	389
									6	11.0\%	1,094		0.221	663
									7	20.6\%	986		0.413	826
									8	7.0\%	318		0.140	281
									9	11.3\%	545		0.227	454
									10	7.9\%	453		0.158	317
									11	8.6\%	679		0.173	346
		Sum	100.0\%	15,319	B	2.000	4,000		Sum	100.0\%	7,484	A	1.666	4,888
		LOS coding: $\mathrm{A}=1, \mathrm{~B}=2, \mathrm{C}=3, \mathrm{D}=4, \mathrm{E}=5, \mathrm{~F}=6$												
	Source:	Tamaulipas BINS Technical Committee representative												


	The Nuevo Progreso Corridor													
	MX-2 for Calendar Y ear 2000							M X-2 for Calendar Y ear 2020						
	Within 100 km of the US-M exico Border?				Y			Within 100 km of the US-Mexico Border?				Y		
	Serves an International POE?				Y			Serves an International POE?				Y		
Seg-	Begin	End		Avg Ann	Level of Service		Peak Hr	Begin	End		Avg Ann	Level of Service		Peak Hr
ment	Post	Post	Length	Daily	A to	1 to	Traffic	Post	Post	Length	Daily	A to	1 to	Traffic
\#	km	km	km	Traffic	F	6	Capacity	km	km	km	Traffic	F	6	Capacity
1														
2														
3	76.000	94.000	18.000	7,189	C	3	2,800	76.000	94.000	18.000	17,471	B	2	6,000
4	94.000	104.000	10.000	10,272	D	4	2,800	94.000	104.000	10.000	24,964	B	2	6,000
		Sum	28.000	17,461		7	5,600		Sum	28.000	42,435		4	12,000
		Estimating the Weighted Averages for MX-2												
		Calendar Y ear 2000						Calendar Year 2020						
		Segment	Weight	AADT	Level of Service		Capacity		Segment	Weight	AADT	Level of Service		Capacity
		1							1					
		2							2					
		3	64.3\%	4,622		1.929	1,800		3	64.3\%	11,231		1.286	3,857
		4	35.7\%	3,669		1.429	1,000		4	35.7\%	8,916		0.714	2,143
		Sum	100.0\%	8,290	C	3.357	2,800		Sum	100.0\%	20,147	B	2.000	6,000
		LOS coding: $\mathrm{A}=1, \mathrm{~B}=2, \mathrm{C}=3, \mathrm{D}=4, \mathrm{E}=5, \mathrm{~F}=6$												
	Source:	Tamaulipas BINS Technical Committee representative												


	The Reynosa Corridor: Calendar Year 2000 Data													
	MX-2							M X-40						
	Within 100 km of the US-M exico Border?				Y			Within 100 km of the US-Mexico Border?				Y		
	Serves an International POE?				Y			Serves an International POE?				Y		
Seg-	Begin	End		Avg Ann	Level of Service		Peak Hr	Begin	End		Avg Ann	Level of Service		Peak Hr
ment	Post	Post	Length	Daily	A to	1 to	Traffic	Post	Post	Length	Daily	A to	1 to	Traffic
\#	km	km	km	Traffic	F	6	Capacity	km	km	km	Traffic	F	6	Capacity
1								0.000	19.100	19.100	23,285	B	2	4,000
2								19.100	33.000	13.900	21,741	E	5	4,000
3								33.000	68.780	35.780	11,414	D	4	4,000
4								68.780	86.400	17.620	6,718	C	3	4,000
5	104.000	122.650	18.650	15,765	A	1	4,000	86.400	113.000	26.600	6,660	C	3	4,000
6	122.650	135.000	12.350	16,897	B	2	4,000	113.000	125.000	12.000	7,010	C	3	4,000
7	135.000	170.680	35.680	7,080	C	3	2,800	125.000	161.900	36.900	6,980	D	4	4,000
8								161.900	192.000	30.100	6,972	A	1	4,000
9								192.000	225.000	33.000	7,315	A	1	4,000
		Sum	66.680	39,742		6	10,800		Sum	225.000	98,095		26	36,000
		Estimating the Weighted Averages for M X10							Estimating the Weighted Averages for M X-40					
		Segment	Weight	AADT	Level of Service		Capacity		Segment	Weight	AADT	Level of Service		Capacity
		1							1	8.5\%	1,977		0.170	340
		2							2	6.2\%	1,343		0.309	247
		3							3	15.9\%	1,815		0.636	636
		4							4	7.8\%	526		0.235	313
		5	28.0\%	4,409		0.280	1,119		5	11.8\%	787		0.355	473
		6	18.5\%	3,130		0.370	741		6	5.3\%	374		0.160	213
		7	53.5\%	3,788		1.605	1,498		7	16.4\%	1,145		0.656	656
									8	13.4\%	933		0.134	535
									9	14.7\%	1,073		0.147	587
		Sum	100.0\%	11,327	B	2.255	3,358		Sum	100.0\%	9,972	B	2.801	4,000
		LOS codin	: $A=1, B$	$2, \mathrm{C}=3, \mathrm{D}$	$\mathrm{E}=5, \mathrm{~F}$									
	Source:	Tamaulipas	NS Technic	Committee	esentativ									



Tamaulipas Highw ay Summary


Tamaulipas Highw ay Summary


	The Camargo Corridor: Calendar Year 2000 Data													
	M X-2							MX-sin num.						
	Within 100 km of the US-M exico Border?				Y			Within 100 km of the US-Mexico Border?				Y		
	Serves an International POE?				Y			Serves an International POE?				Y		
Seg-	Begin	End		Avg Ann	Level of Service		Peak Hr	Begin	End		Avg Ann	Level of Service		Peak Hr
ment	Post	Post	Length	Daily	A to	1 to	Traffic	Post	Post	Length	Daily	A to	1 to	Traffic
\#	km	km	km	Traffic	F	6	Capacity	km	km	km	Traffic	F	6	Capacity
1								0.000	30.000	30.000	2,277	C	3	2,800
2								30.000	40.000	10.000	2,016	C	3	2,800
3								40.000	65.000	25.000	2,446	C	3	2,800
4														
5														
6														
7														
8	170.680	198.400	27.720	4,268	B	2	2,800							
9	198.400	222.770	24.370	6,214	C	3	2,800							
		Sum	52.090	10,482		5	5,600		Sum	65.000	6,739		9	8,400
			stimatin	the Weigh	Averag	for MX			Estim	mating th	Weighted	erages	M X-sin	um.
		Segment	Weight	AADT	Level o	Service	Capacity		Segment	Weight	AADT	Level	Service	Capacity
		1							1	46.2\%	1,051		1.385	1,292
		2							2	15.4\%	310		0.462	431
		3							3	38.5\%	941		1.154	1,077
		4												
		5												
		6												
		7												
		8	53.2\%	2,271		1.064	1,490							
		9	46.8\%	2,907		1.404	1,310							
		Sum	100.0\%	5,178	B	2.468	2,800		Sum	100.0\%	2,302	C	3.000	2,800
		LOS coding	: $A=1, B$	$2, \mathrm{C}=3, \mathrm{D}$	, $\mathrm{F}=5, \mathrm{~F}=$									
	Source:	Tamaulipas	INS Techni	Committee	resentative									


	The Camargo Corridor: Calendar Year 2020 Data													
	M X-2							MX-sin num.						
	Within 100 km of the US-M exico Border?				Y			Within 100 km of the US-Mexico Border?				Y		
	Serves an International POE?				Y			Serves an International POE?				Y		
Seg-	Begin	End		Avg Ann	Level of Service		Peak Hr	Begin	End		Avg Ann	Level of Service		Peak Hr
ment	Post	Post	Length	Daily	A to	1 to	Traffic	Post	Post	Length	Daily	A to	1 to	Traffic
\#	km	km	km	Traffic	F	6	Capacity	km	km	km	Traffic	F	6	Capacity
1								0.000	30.000	30.000	4,755	A	1	6,000
2								30.000	40.000	10.000	4,210	A	1	6,000
3								40.000	65.000	25.000	5,108	A	1	6,000
4														
5														
6														
7														
8	170.680	198.400	27.720	8,912	A	1	6,000							
9	198.400	222.770	24.370	12,976	B	2	4,000							
		Sum	52.090	21,888		3	10,000		Sum	65.000	14,073		3	18,000
			stimatin	the Weigh	Avera	for MX			Estim	mating th	Weighted	erages	MX-sin	um.
		Segment	Weight	AADT	Level	Service	Capacity		Segment	Weight	AADT	Level	ervice	Capacity
		1							1	46.2\%	2,195		0.462	2,769
		2							2	15.4\%	648		0.154	923
		3							3	38.5\%	1,965		0.385	2,308
		4							4					
		5							5					
		6							6					
		7							7					
		8	53.2\%	4,743		0.532	3,193		8					
		9	46.8\%	6,071		0.936	1,871		9					
									10					
		Sum	100.0\%	10,813	A	1.468	5,064		Sum	100.0\%	4,807	A	1.000	6,000
		LOS coding	: $\mathrm{A}=1, \mathrm{~B}$	$2, \mathrm{C}=3, \mathrm{D}$	$\mathrm{E}=5, \mathrm{~F}$									
	Source:	Tamaulipas	INS Techni	Committee	esentativ									

Tamaulipas Highway Summary

	The Miguel Alemán Corridor: Calendar Year 2000 Data													
	M X-2							MX-54						
	Within 100 km of the US-M exico Border?				Y			Within 100 km of the US-M exico Border?				Y		
	Serves an International POE?				Y			Serves an International POE?				Y		
Seg-	Begin	End		Avg Ann	Level of Service		Peak Hr	Begin	End		Avg Ann	Level of Service		Peak Hr
ment	Post	Post	Length	Daily	A to	1 to	Traffic	Post	Post	Length	Daily	A to	1 to	Traffic
\#	km	km	km	Traffic	F	6	Capacity	km	km	km	Traffic	F	6	Capacity
1								0.000	19.120	19.120	17,311	B	2	2,800
2								19.120	21.300	2.180	17,355	C	3	2,800
3								21.300	28.150	6.850	30,144	C	3	2,800
4								28.150	38.100	9.950	5,694	C	3	2,800
5								38.100	74.100	36.000	5,287	C	3	2,800
6								74.100	95.950	21.850	2,742	B	2	2,800
7								95.950	115.800	19.850	3,450	B	2	2,800
8								115.800	132.800	17.000	3,080	B	2	2,800
9								132.800	156.210	23.410	3,021	B	2	2,800
10	222.770	237.350	14.580	3,030	C	3	2,800							
		Sum	14.580	3,030		3	2,800		Sum	156.210	88,084		22	25,200
		Estimating the Weighted Averages for MX-2							Estimating the Weighted Averages for MX-54					
		Segment	Weight	AADT	Level of Service		Capacity		Segment	Weight	AADT	Level of Service		Capacity
		1							1	12.2\%	2,119		0.245	343
		2							2	1.4\%	242		0.042	39
		3							3	4.4\%	1,322		0.132	123
		4							4	6.4\%	363		0.191	178
		5							5	23.0\%	1,218		0.691	645
		6							6	14.0\%	384		0.280	392
		7							7	12.7\%	438		0.254	356
		8							8	10.9\%	335		0.218	305
		9							9	15.0\%	453		0.300	420
		10	100.0\%	3,030		3.000	2,800							
		Sum	100.0\%	3,030	C	3.000	2,800		Sum	100.0\%	6,874	B	2.352	2,800
		LOS coding: $\mathrm{A}=1, \mathrm{~B}=2, \mathrm{C}=3, \mathrm{D}=4, \mathrm{E}=5, \mathrm{~F}=6$												
	Source:	Tamaulipas BINS Technical Committee representative												

Tamaulipas Highw ay Summary

	The Miguel Alemán Corridor: Calendar Year 2020 Data													
	M X-2							MX-54						
	Within 100 km of the US-M exico Border?				Y			Within 100 km of the US-M exico Border?				Y		
	Serves an International POE?				Y			Serves an International POE?				Y		
Seg-	Begin	End		Avg Ann	Level of Service		Peak Hr	Begin	End		Avg Ann	Level of Service		Peak Hr
ment	Post	Post	Length	Daily	A to	1 to	Traffic	Post	Post	Length	Daily	A to	1 to	Traffic
\#	km	km	km	Traffic	F	6	Capacity	km	km	km	Traffic	F	6	Capacity
1								0.000	19.120	19.120	38,965	A	1	8,000
2								19.120	21.300	2.180	39,064	A	1	8,000
3								21.300	28.150	6.850	67,850	A	1	8,000
4								28.150	38.100	9.950	12,816	B	2	6,000
5								38.100	74.100	36.000	11,900	B	2	6,000
6								74.100	95.950	21.850	6,172	B	2	6,000
7								95.950	115.800	19.850	7,766	B	2	6,000
8								115.800	132.800	17.000	6,933	B	2	6,000
9								132.800	156.210	23.410	6,800	B	2	6,000
10	222.770	237.350	14.580	6,327	B	2	6,000							
		Sum	14.580	6,327		2	6,000		Sum	156.210	198,266		15	60,000
		Estimating the Weighted Averages for M X-2							Estimating the Weighted Averages for MX-54					
		Segment	Weight	AADT	Level of Service		Capacity		Segment	Weight	AADT	Level of Service		Capacity
		1							1	12.2\%	4,769		0.122	979
		2							2	1.4\%	545		0.014	112
		3							3	4.4\%	2,975		0.044	351
		4							4	6.4\%	816		0.127	382
		5							5	23.0\%	2,742		0.461	1,383
		6							6	14.0\%	863		0.280	839
		7							7	12.7\%	987		0.254	762
		8							8	10.9\%	755		0.218	653
		9							9	15.0\%	1,019		0.300	899
		10	100.0\%	6,327		2.000	6,000							
		Sum	100.0\%	6,327	B	2.000	6,000		Sum	100.0\%	15,472	A	1.820	6,360
		LOS coding: $\mathrm{A}=1, \mathrm{~B}=2, \mathrm{C}=3, \mathrm{D}=4, \mathrm{E}=5, \mathrm{~F}=6$												
	Source:	Tamaulipas BINS Technical Committee representative												




The Nuevo Laredo Corridor: Calendar Year 2000 Data												
	Estimating the Weighted Averages for M X-2						Estimating the Weighted Averages for MX-85					
	Segment	Weight	AADT	Level of Service		Capacity	Segment	Weight 5.3\%	$\begin{gathered} \text { AADT } \\ \hline 625 \end{gathered}$	Level of Service		$\begin{array}{\|c\|c\|} \hline \text { Capacity } \\ \hline 212 \end{array}$
	1						1				0.053	
	2						2	1.7\%	144		0.017	68
	3						3	1.8\%	143		0.018	74
	4						4	5.2\%	342		0.052	207
	5						5	20.3\%	1,803		0.811	406
	6						6	9.1\%	573		0.272	254
	7						7	11.2\%	685		0.336	313
	8						8	14.2\%	633		0.426	398
	9						9	12.2\%	982		0.122	487
	10						10	9.4\%	606		0.094	374
	11	17.1\%	490		0.342	479	11	9.7\%	760		0.097	388
	12	69.8\%	676		1.395	1,953						
	13	13.1\%	392		0.262	367						
	Sum	100.0\%	1,558	B	2.000	2,800	Sum	100.0\%	7,297	B	2.298	3,181
	LOS coding: $\mathrm{A}=1, \mathrm{~B}=2, \mathrm{C}=3, \mathrm{D}=4, \mathrm{E}=5, \mathrm{~F}=6$											
Source:	Tamaulipas BINSTechnical Committee representative											


The Nuevo Laredo Corridor: Calendar Year 2020 Data												
	Estimating the Weighted Averages for M X-2						Estimating the Weighted Averages for MX-85					
	Segment	Weight	AADT	Level of Service		Capacity	Segment	Weight	$\begin{gathered} \text { AADT } \\ \hline 1,263 \end{gathered}$	Level of Service		$\begin{array}{\|c} \text { Capacity } \\ \hline 425 \end{array}$
	1						1				0.053	
	2						2	1.7\%	290		0.017	137
	3						3	1.8\%	289		0.018	147
	4						4	5.2\%	691		0.052	414
	5						5	20.3\%	3,644		0.406	1,217
	6						6	9.1\%	1,159		0.181	544
	7						7	11.2\%	1,384		0.224	671
	8						8	14.2\%	1,280		0.284	853
	9						9	12.2\%	1,984		0.122	974
	10						10	9.4\%	1,225		0.094	749
	11	17.1\%	1,024		0.342	685	11	9.7\%	1,536		0.097	775
	12	69.8\%	1,412		1.395	2,791						
	13	13.1\%	818		0.262	525						
	Sum	100.0\%	3,254	B	2.000	4,000	Sum	100.0\%	14,745	A	1.547	6,905
	LOS coding: $\mathrm{A}=1, \mathrm{~B}=2, \mathrm{C}=3, \mathrm{D}=4, \mathrm{E}=5, \mathrm{~F}=6$											
Source:	Tamaulipas BINSTechnical Committee representative											



## CORRIDOR EVALUATION <br> TEXAS RESULTS AND DATA

Corridor evaluations are conducted to determine the corridors with the greater needs. This corridor evaluation uses quantifiable data with a systematic method to evaluate transportation corridors. Corridors are combinations of modes that move people, vehicles and goods from one location to another. To facilitate the evaluation process, the computations are calculated in formulas contained in the spreadsheets that will be sent to each of the states. Each evaluation spreadsheet is tailored to each state, thus each state's evaluation spreadsheet contains unique data - even though the methodology is the same. It is envisioned that each state will use its spreadsheet to conduct corridor evaluations, at its discretion.

Overall, the evaluation is conducted by compiling data, allocating the data to corridors and comparing corridors [within a state] to one another. There are 16 indicators ${ }^{1}$ for which we compile data for each corridor. The overall evaluation uses two broad categories of data:

1. Historical Data - data for 16 indicators for the year 2000.
2. Change Data - a combination of actual changes for the 16 indicators from 2000 to 2020 and percent changes for the same 16 indicators from 2000 to 2020.

Conducting the evaluations is based on the ordering of data from highest to lowest to determine need. For example, assume there are three corridors in a state and the Average Annual Daily Traffic [AADT] in Corridor A is 157,000, the AADT for Corridor B is 450,000 and the AADT for Corridor C is 30,000. In this example, Corridor B is listed first because it has the highest AADT [450,000], its evaluation results are one, and it has the highest need. Corridor A is listed second because its AADT is 157,000 [second highest], its evaluation results are two, and it has the second highest need. Corridor C is listed third because it has the lowest AADT [30,000], its evaluation results are three and it has the lowest need. This process is repeated for all 16 indicators with data for calendar year 2000, for all 16 indicators for the change in the data between 2000 and 2020, and all 16 indicators for the percent change in the data between 2000 and 2020. There are a total of 48 evaluations compiled if all the data are present.

Higher values for the indicators represent more traffic (AADT), more congestion (LOS), more trade (dollar value of air, maritime, rail and truck cargo across POEs), more vehicles (number of passenger vehicles, trucks, buses, and rail cars across a POE), which point to both the relative importance of the corridor and its infrastructure needs. The highest value is given "first place" or a score of one and represents the highest need.

The evaluation results are summed by mode. For example, there are four indicators for highways AADT, the highway length [in miles], the level of service [LOS] and the highway capacity at peak hours. If a corridor was listed first for each indicator, its highway score would be a four [a score of

[^22]one for each indicator]. This is done for Land Ports of Entry [POE - five indicators], airports [one indicator], maritime ports [two indicators] and railroads [four indicators]. The lower the score, the higher the listing. It follows that the lowest mode score represents the corridor with the greatest need for that mode.

The overall score for each corridor is then calculated by summing the five modes scores [one each for highways, POE, airports, maritime ports and railroads]. The corridor with the lowest overall score is listed first and has the highest overall need. The corridor with the second lowest overall score is listed second and has the second highest need. The corridor with the highest overall score is listed third and has the lowest overall need.

Recall there is one historical component and there are two change components (change in absolute terms and percent change). Without any adjustments, the change component has twice the impact on the final result as the historical data. It was decided that the historical values are as important as the projected changes. To accomplish equal weighting, the historical scores are multiplied by two.

## GENERAL DESCRIPTION OF TEXAS' CORRIDORS

## Corridors

Texas has identified six corridors for the study and they are called the IH-10 Corridor, the IH-35 Corridor, the IH-69 Corridor, the U.S. 83 Corridor, the La Entrada al Pacifico Corridor and the Ports to Plains Corridor.

## Highways

The IH-10 Corridor is composed of five highways: I-10, I-110, US-62, US-85 \& US Loop 375. The IH-35 Corridor is composed of three highways: I-35, US-90 and State Spur [SS] 20. The IH-69 Corridor is composed of four highways: US-59, US-77, US-281 and State-359 [S-359]. The U.S. 83 Corridor is composed of two highways: US-83 and SS-200/Business 83. The La Entrada Corridor is composed of one highway: US-67. The Ports to Plains Corridor is composed of three highways: US-57, US-83 and US-277. No data on Level of Service [LOS] or capacity is provided. Therefore, the level of current or future congestion on Texas highways cannot be established.

## Land Ports of Entry [POE]

The Texas BINS Technical Committee representative provided data on 26 POEs which include bridges, one dam, and one ferry on the US-M exico border, in Texas. Trucks crossed at 14 of the POEs while passenger vehicles and buses crossed at 24 POEs. No passenger vehicle or buses cross at Stanton and Word Trade Bridge. In calendar year 2000, about 2.9 million trucks crossed into Texas through the 14 POEs and transported about 13.6 million tons of goods valued at about $\$ 62.3$ billion. In addition, about 50 million passenger vehicles and buses entered Texas through the 24 POEs. Texas envisions that the number of passenger vehicles and buses entering through its POEs will increase about 192\% to 79.6 million in 2020.

## Airports

There are eight airports in Texas that meet the minimum corridor evaluation criteria [located within 100 km of the US-M exico border and designated as an international port of entry]. In calendar year 2000 about 671,000 tons of goods were transported at four of the eight airports. The airport with the longest runway was El Paso International Airport with a runway length of just over 11,000 feet. In addition, El Paso International Airport transported more goods than the other airports with about 319,000 tons of goods - or nearly $47 \%$ of the total.

## Railroads

There are a number of railroads in Texas that operate within 100 km of the US-Mexico border. However, the Burlington Northern Santa Fe [BNSF], the Union Pacific [UP], and the Tex Mex are the only railroads that transport goods from the land POEs. Of the 26 POEs, rail crossings occur at four POEs: Eagle Pass II, El Paso - Santa Fe, Laredo II, and Brownsville B\&M.

The BNSF operates in the IH-10 Corridor and interchanges with Ferrocarril Mexicano at the El Paso Santa Fe POE. In calendar year 2000, BNSF transported about 673,000 tons of goods from this POE.

The UP operates in four corridors: The Ports to Plains, the IH-10, IH-35 and IH-69. UP interchanges with Transportacion Ferroviaria M exicana [TFM] at the Laredo II POE; UP interchanges with TFM at the Brownsville B\&M POE; and UP interchanges with Ferromex at the Eagle Pass II POE. In calendar year 2000, UP transported about 4.8 million tons of goods from these three POE worth about $\$ 18$ billion. Since no railroads operate in the La Entrada and U.S. 83 Corridors, there are no data for those corridors.

The Tex Mex railroad interchanges with TFM at the Laredo II POE.

In 2004, the Presidio POE rail crossing is anticipated to reopen and may potentially affect rail traffic at the El Paso POE.

## Maritime Ports

Texas has one maritime port that meets the minimum corridor evaluation criteria [within 100 km of the US-M exico border and designated as an international port of entry]. That port is located at Brownsville.

In calendar year 2000, about 5.25 million tons of goods and no containers were moved through the Brownsville Maritime Port. Texas envisions substantial growth in the Brownsville Maritime Port with goods shipped projected to increase to 10 million tons in 2020. In addition, it is envisioned that Brownsville Maritime Port will be handling container traffic in 2020.

Source: Texas BINSTechnical Committee representative.

## ANALYSIS OF CORRIDOR EVALUATION RESULTS

The IH-10 Corridor is listed first. The IH-69 Corridor is listed second. The IH-35 Corridor is listed third. The U.S. 83 Corridor is listed fourth. The Ports to Plains Corridor is listed fifth. The La Entrada al Pacifico Corridor is listed last. The IH-10 Corridor obtains its first place listing by being listed first with respect to the historical data, and being listed first with respect to the change data.

## Historical Data

This discussion reviews highway, land POE, airport, maritime port and rail data with their results. With regard to the highways, it should be remembered that level of service and peak capacity data are not available. Therefore, we do not have a sense of congestion that may occur on the highways. The IH-69 Corridor is listed first with regard to highways with a first place listing for highway length [ 262.3 miles] and second place listing for AADT [[49, 514]. The IH-10 Corridor is listed first for AADT with 137,541-almost three times larger than the IH-69 Corridor and 80 times larger than the La Entrada al Pacifico Corridor.

For truck and passenger vehicle data, airport data, and maritime port data, the IH-10 Corridor is always listed first by virtue of the fact that those data are allocated based on the distribution of AADT amongst the corridors [as noted above, $\mathrm{IH}-10$ is listed first with respect to AADT]. For railroads, it is important to recall that only rail goods that cross the US-M exico border are used in the evaluation and the BNSF and UP railroads transport goods from the POE. The $\mathrm{IH}-10$ Corridor is listed first because the BNSF and UP railroads transport goods from the POE into this corridor, while three other corridors are tied for second because the UP is the only rail line that transports goods from the POE to these corridors. The La Entrada and U.S. 83 Corridors have no rail data and are tied for last.

## Change Data

This discussion reviews highway, land POE, airport, maritime port and rail data for both absolute changes and percent changes. With regard to absolute changes in highway data, the $\mathrm{IH}-10$ Corridor is listed first by virtue of the fact that it is listed first for AADT with an increase of 53,423 . In addition, the $\mathrm{IH}-10$ Corridor is tied for first for highway length with the other corridors as there is no change with regard to highway length.

For trucks and passenger vehicles, airport data, and maritime port data, the IH-10 Corridor is always listed first by virtue of the fact that the 2000 year data is larger than the other three corridors and all the corridors use the same growth rates. For railroad data, the $\mathrm{IH}-10$ Corridor is listed first because it has the largest 2000 data and uses the same growth rate as the other corridors.

With regard to percent changes in highway data, the IH-35 Corridor is listed first by virtue of the fact that it is listed first in AADT growth [with 97.0\%] and tied for first in growth of highway length with the other five corridors - where there was no change.

With data for trucks, passenger vehicles, airport and maritime port data, the six corridors are always tied for first by virtue of the fact that the growth rates are the same for each corridor. For railroad data, the four corridors that contain railroad data are tied for first because the growth rates are the same for each of the corridors.

Table 1
Summary Corridor Results

	Corridor Scores ${ }^{1}$						Evaluation Results					
	A	B	C	D	E	F	A	B	C	D	E	F
	Ports to Plains	La Entrada al Pacifico	IH-10	IH-35	IH-69	U.S. 83						
Historical Data for $200{ }^{2}$												
Highways	18	24	8	12	6	16	5	6	2	3	1	4
Land Ports of Entry	40	48	8	32	16	24	5	6	1	4	2	3
Airports ${ }^{3}$	10	12	2	8	4	6	5	6	1	4	2	3
Maritime Ports ${ }^{4}$	12	14	4	10	6	8	5	6	1	4	2	3
Railroads ${ }^{5}$	8	20	4	8	8	20	2	5	1	2	2	5
Sum of Historical Scores:	88	118	26	70	40	74	5	6	1	3	2	4
Changes Between 2000 and 2020 ${ }^{6}$												
Highways	9	13	9	6	8	9	3	6	3	1	2	3
Land Ports of Entry	24	28	8	16	12	20	5	6	1	3	2	4
Airports ${ }^{3}$	6	7	2	4	3	5	5	6	1	3	2	4
Maritime Ports ${ }^{4}$	12	14	4	8	6	10	5	6	1	3	2	4
Railroads ${ }^{5}$	6	20	4	6	6	20	2	5	1	2	2	5
Sum of Change Scores:	57	82	27	40	35	64	4	6	1	3	2	5
Overall ScoresT:	145	200	53	110	75	138						
Overall Result:	5	6	1	3	2	4						

Notes:
1 The Corridor Scores are the Evaluation Results in Tables 2, 4 and 5.
2 Historical Scores from Table 2. To insure equal weighting with the Changes scores, the Historical corridor scores are multiplied by two.
3 Texas has eight airports within 100 km of the US-Mexico border that are designated as international ports of entry.
4 Texas has one maritime port located within 100 km of the US-M exico border that is designated as an international port of entry.
5 The evaluation is based on rail goods that cross the border at a land POE. The Burlington Northern Santa Fe and the Union Pacific railroads are the two rail companies that transport goods from the land POE in Texas. The allocation of rail goods to corridors is specified from the Part 2 and Part 5 questionnaires.
$6 \quad$ The Changes Scores is the sum of the Corridor Scores from Table 4 [Corridor Changes] and the Corridor Scores from Table 5 [Corridor Percent Changes].
7 The Overall Score is the sum of theHistorical Score and the Changes Score. The Historical Data scores and the Changes Between 2000 and 2020 scores are equally weighted.

Lower Score represents greater need.

Table 2
Corridor Data For 2000

	Corridor Raw Data						Evaluation Results					
	A	B	$\frac{\mathrm{C}}{\mathrm{IH}-10}$	D	E	F	A	B	C	D	E	F
	Ports to Plains	Entrada al Pacifico		1H-35	1H-69	U.S. 83						
Highways												
Average Annual Daily Traffic	16,633	1,717	137,541	20,129	49,514	20,475	5	6	1	4	2	3
Highway Length [in km]	194.3	100.7	206.4	256.2	262.8	188.1	4	6	3	2	1	5
LOS[ $\mathrm{A}=1$ to $\mathrm{F}=9$ ]												
Capacity at Peak Hour												
							9	12	4	6	3	8
				Overall Highway Results			5	6	2	3	1	4
Land Port of Entry Border Crossing												
Number trucks	196,640	20,293	1,626,015	237,965	585,360	242,058	5	6	1	4	2	3
Total volume [tons]	916,380	94,569	7,577,527	1,108,961	2,727,886	1,128,036	5	6	1	4	2	3
Value of goods Millions\$	\$4,207	\$434	\$34,786	\$5,091	\$12,523	\$5,178	5	6	1	4	2	3
\#passenger vehicles \& buses	3,390,557	349,901	28,036,448	4,103,098	10,093,032	4,173,673	5	6	1	4	2	3
				POE Scores			20	24	4	16	8	12
				Overall POE Results			5	6	1	4	2	3
Airports												
Total volume [tons]	45,393	4,685	375,356	54,933	135,127	55,878	5	6	1	4	2	3
				Airport Scores			5	6	1	4	2	3
				Overall Airport Results			5	6	1	4	2	3
Maritime Ports												
Total volume [millionstons]	0.35	0.04	2.93	0.43	1.06	0.44	5	6	1	4	2	3
Total number TEUs	0	0	0	0	0	0	1	1	1	1	1	1
				Maritime Port Score			6	7	2	5	3	4
				Overall M aritime Results			5	6	1	4	2	3
	Corridor Raw Data						Evaluation Results					
	A	B	C	D	E	F	A	B	C	D	E	F


	Ports to Plains	La Entrada al Pacifico	IH-10	IH-35	IH-69	U.S. 83						
Railroads Border Crossing at POE ${ }^{1}$												
Number rail cars												
Total volume [tons]	1,189,423		1,862,731	1,189,423	1,189,423		2	5	1	2	2	5
Total Number TEUs												
Value of goods Millions\$	\$4,519.0		\$5,565.4	\$4,519.0	\$4,519.0		2	5	1	2	2	5
				Railroad S	ores		4	10	2	4	4	10
				Overall Rail	road Result		2	5	1	2	2	5
Total AADT in Six Corridors		Sha	e of AADT	mong Corr	dors							
246,010	6.8\%	0.7\%	55.9\%	8.2\%	20.1\%	8.3\%						

Notes:
POE, Airport \& Maritime port data are assigned to Corridors based on AADT distribution.
Historical data from Texas BINSTechnical Committee Representative, see Tables 6-9 for details.
${ }_{1}$ UP rail data are divided equally among four corridors: Ports to Plains, IH-10, IH-35\&IH-69. The BNSF rail data are allocated to the IH-10 Corridor. Corridor assignments for the rail data are obtained from the Part 2 POE questionnaire submitted by the Texas BINS Technical Committee representative. Since no railroads operate in the La Entrada and US-83 Corridors, there are no data for those corridors.

Lower Score represents greater need.

Table 3
Corridor Data and Results for 2020

	Corridor Raw Data						Evaluation Results					
	A	B	C	D	E	F	A	B	C	D	E	F
	$\begin{aligned} & \hline \text { Ports to } \\ & \text { Plains } \end{aligned}$	La Entrada al Pacifico	IH-10	IH-35	IH-69	U.S. 83						
Highways												
Average Annual Daily Traffic	30,794	2,933	222,719	39,655	84,693	36,916	5	6	1	3	2	4
Highway Length [in km]	194.3	100.7	206.4	256.2	262.8	188.1	4	6	3	2	1	5
LOS [A=1 to F =9]												
Capacity at Peak Hour												
				Highway Scores			9	12	4	5	3	9
				Overall Highway Results			5	6	2	3	1	4
Land Port of Entry Border   Crossing												
Number trucks	343,051	32,677	2,481,109	441,765	943,486	411,242	5	6	1	3	2	4
Total volume [tons]	1,769,539	168,554	12,798,160	2,278,730	4,866,728	2,121,287	5	6	1	3	2	4
Value of goods Millions\$	\$13,384	\$1,275	\$96,803	\$17,236	\$36,811	\$16,045	5	6	1	3	2	4
\#passenger vehicles \& buses	5,883,652	560,437	42,553,402	7,576,693	16,181,690	7,053,200	5	6	1	3	2	4
				POE Scores			20	24	4	12	8	16
				Overall POE Results			5	6	1	3	2	4
Airports												
Total volume [tons]	114,877	10,942	830,846	147,933	315,944	137,712	5	6	1	3	2	4
				Airport Scores			5	6	1	3	2	4
				Overall Airport Results			5	6	1	3	2	4
Maritime Ports												
Total volume [millionstons]	0.74	0.07	5.33	0.95	2.03	0.88	5	6	1	3	2	4
Total number TEUs	7,372	702	53,319	$9,494$	20,276	8,838	5	6	1	3	2	4
				Maritime Port Score			10	12	2	6	4	8
				Overall Maritime Results			5	6	1	3	2	4
	Corridor Raw Data						Evaluation Results					


	A	B	C	D	E	F	A	B	C	D	E	F
	Ports to Plains	La Entrada al Pacifico	IH-10	IH-35	IH-69	U.S. 83						
Railroads Border Crossing at POE ${ }^{1}$												
Number rail cars												
Total volume [tons]	1,911,402		2,993,408	1,911,402	1,911,402		2	5	1	2	2	5
Total Number TEUs												
Value of goods Millions\$	11,989		14,765	11,989	11,989		2	5	1	2	2	5
				Railroad S	ores		4	10	2	4	4	10
				Overall Rair	road Result		2	5	1	2	2	5
Total AADT in Six Corridors	Share of AADT Among Corridors											
417,710	7.4\%	0.7\%	53.3\%	9.5\%	20.3\%	8.8\%						

Notes:
POE, Airport \& Maritime port data are assigned to Corridors based on AADT distribution.
Historical data from Texas BINSTechnical Committee Representative, see Tables 6-9 for details.
1 UP rail data are divided equally among four corridors: Ports to Plains, IH-10, IH-35\& IH-69. The BNSF rail data are allocated to the IH-10 Corridor. Corridor assignments for the rail data are obtained from the Part 2 POE questionnaire submitted by the Texas BINSTechnical Committee representative. Since no railroads operate in the La Entrada and US-83 Corridors, there are no data for those corridors.

## Lower Score represents greater need.

Table 4
Corridor Changes and Results, 2000-2020

	Corridor Raw Data						Evaluation Results					
	A	B	C	D	E	F	A	B	C	D	E	F
	$\begin{aligned} & \hline \text { Ports to } \\ & \text { Plains } \end{aligned}$	La Entrada al Pacifico	IH-10	IH-35	IH-69	U.S. 83						
Highways												
Average Annual Daily Traffic	14,161	1,217	85,178	19,526	35,178	16,440	5	6	1	3	2	4
Highway Length [in km]	0.0	0.0	0.0	0.0	0.0	0.0	1	1	1	1	1	1
LOS [ $\mathrm{A}=1$ to $\mathrm{F}=9$ ]												
Capacity at Peak Hour												
				Highway Scores			6	7	2	4	3	5
				Overall Highway Results			5	6	1	3	2	4
Land Port of Entry Border Crossing												
Number trucks	143,917	12,365	865,664	198,448	357,520	445,556	5	6	1	3	2	4
Total volume [tons]	861,826	74,048	5,183,890	1,188,373	2,140,949	1,000,553	5	6	1	3	2	4
Value of goods Millions\$	\$9,842	\$846	\$59,200	\$13,571	\$24,450	\$11,426	5	6	1	3	2	4
\#passenger vehicles \& buses	2,446,381	210,194	14,714,998	3,373,318	6,077,302	2,840,171	5	6	1	3	2	4
				POE Scores			20	24	4	12	8	16
				Overall POE Results			5	6	1	3	2	4
Airports												
Total volume [tons]	73,145	6,285	439,967	100,860	181,707	84,919	5	6	1	3	2	4
				Airport Scores			5	6	1	3	2	4
				Overall Airport Results			5	6	1	3	2	4
Maritime Ports												
Total volume [millionstons]	0.39	0.03	2.36	0.54	0.97	0.46	5	6	1	3	2	4
Total number TEUs	8,247	709	49,608	$11,372$	20,488	9,575	5	6	1	3	2	4
				Maritime Port Score			10	12	2	6	4	8
				Overall Maritime Results			5	6	1	3	2	4
	Corridor Raw Data						Evaluation Results					


	A	B	C	D	E	F	A	B	C	D	E	F
	Ports to Plains	La Entrada al Pacifico	IH-10	IH-35	IH-69	U.S. 83						
Railroads Border Crossing at POE												
Number rail cars												
Total volume [tons]	721,979		1,130,677	721,979	721,979		2	5	1	2	2	5
Total Number TEUs												
Value of goods Millions\$	7,470		9,200	7,470	7,470		2	5	1	2	2	5
				Railroad	ores		4	10	2	4	4	10
				Overall	road Res		2	5	1	2	2	5
Total AADT in Three Corridors	Share of AADT Among Corridors											
171,700	8.2\%	0.7\%	49.6\%	11.4\%	20.5\%	9.6\%						

Notes:
POE, Airport \& Maritime port data are assigned to Corridors based on AADT distribution.
Differences are estimated by subtracting the year 2000 data from the 2020 projections.
Since no railroads operate in the La Entrada and US-83 Corridors, there are no rail data for those corridors,
See Tables 6-9 for details.

Lower Score represents greater need.

Table 5
Corridor Percent Changes and Results, 2000-2020

	Corridor Raw Data						Evaluation Results					
	A	B	C	D	E	F	A	B	C	D	E	F
	Ports to Plains	La Entrada al Pacifico	IH-10	IH-35	IH-69	U.S. 83						
Highways												
Average Annual Daily Traffic	85.1\%	70.9\%	61.9\%	97.0\%	71.0\%	80.3\%	2	5	6	1	4	3
Highway Length [in km]	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	1	1	1	1	1	1
$\operatorname{LOS}[\mathrm{A}=1$ to $\mathrm{F}=9$ ]												
Capacity at Peak Hour												
				Highway Scores			3	6	7	2	5	4
				Overall Highway Results			2	5	6	1	4	3
Land Port of Entry Border   Crossing												
Number trucks	60.0\%	60.0\%	60.0\%	60.0\%	60.0\%	60.0\%	1	1	1	1	1	1
Total volume [tons]	77.1\%	77.1\%	77.1\%	77.1\%	77.1\%	77.1\%	1	1	1	1	1	1
Value of goods Millions \$	191.8\%	191.8\%	191.8\%	191.8\%	191.8\%	191.8\%	1	1	1	1	1	1
\#passenger vehicles \& buses	59.2\%	59.2\%	59.2\%	59.2\%		59.2\%	1	1	1	1	1	1
							4	4	4	4	4	4
				Overall POE Results			1	1	1	1	1	1
Airports												
Total volume [tons]	132.1\%	132.1\%	132.1\%	132.1\%	132.1\%	132.1\%	1	1	1	1	1	1
				Airport Scores			1	1	1	1	1	1
				Overall Airport Results			1	1	1	1	1	1
Maritime Ports												
Total volume [millionstons]	90.6\%	90.6\%	90.6\%	90.6\%	90.6\%	90.6\%	1	1	1	1	1	1
Total number TEUs ${ }^{1}$	+\%	+\%	+\%		+\%	+\%	1	1	1	1	1	1
				Maritime Port Score			2	2	2	2	2	2
				Overall Maritime Results			1	1	1	1	1	1


	Corridor Raw Data						Evaluation Results					
	A	B	C	D	E	F	A	B	C	D	E	F
	Ports to Plains	La   Entrada al   Pacifico	IH-10	IH-35	IH-69	U.S. 83						
Railroads Border Crossing at POE												
Number rail cars												
Total volume [tons]	60.7\%		60.7\%	60.7\%	60.7\%		1	5	1	1	1	5
Total Number TEUs												
Value of goods Millions \$	165.3\%		165.3\%	165.3\%	165.3\%		1	5	1	1	1	5
				Railroad Scores			2	10	2	2	2	10
				Overall Railroad Results			1	1	1	1	1	5

Notes:
${ }^{1}$. The number of TEU's increased from zero so no calculation is made for the percent increase
Since no railroads operate in the La Entrada and US-83 Corridors, there are no rail data for those corridors.
See Tables 6-9 for details.

Lower Score represents greater need.

Table 6
Highway Data


Table 7a
Land Ports of Entry [POE] Crossing Data

	Santa Fe   [El Paso]	Stanton [EI Paso]	Br of America [El Paso]	Ysleta   [El Paso]	Fabens [EI Paso]	Ft   Hancock	Presido ${ }^{5}$	Amistad Dam [Del Rio]	Del Rio	Eagle Pass I	Eagle Pass II	Columbia   [Laredo]	WId Trade Br [Laredo]
Federal inspection facilities at POE?	Yes												
Northbound POE Crossing Data for $2000^{1}$													
Number trucks	0	0	354,914	365,492	0	0	8,734	0	60,319	0	106,892	561,035	728,756
Tons of goods	0	0	1,102,882	1,102,882	0	0	71,368	0	183,675	0	632,957	3,379,785	4,301,545
Value [Millions \$] moved by truck	\$0.0	\$0.0	\$9,581.0	\$9,581.0	\$0.0	\$0.0	\$152.0	\$0.0	\$1,232.0	\$0.0	\$2,198.7	\$12,046.3	\$15,331.7
Number of passenger vehides	4,671,993	0	8,168,984	3,856,461	177,484	177,484	723,560	41,528	1,927,184	1,192,316	2,165,363	130,364	0
Number of buses	30	0	7,789	183	0	0	370	0	7,073	2,068	608	300	0
Number passenger vehides \& buses	4,672,023	0	8,176,773	3,856,644	177,484	177,484	723,930	41,528	1,934,257	1,194,384	2,165,971	130,664	0
Number of rail cars	0	0	N/A	N/A	N/A	N/A	0	N/A	N/A	N/A	0	N/A	N/A
Volume of tons moved by rail	673,308	0	N/A	N/A	N/A	N/A	0	N/A	N/A	N/A	832,357	N/A	N/A
Number of TEUs moved by rail	0	0	N/A	N/A	N/A	N/A	0	N/A	N/A	N/A	0	N/A	N/A
Value [Millions \$] moved by rail	\$1,046.4	\$0.0	N/A	N/A	N/A	N/A	\$0.0	N/A	N/A	N/A	\$804.0	N/A	N/A
Northbound POE Crossing Data for 2020													
Number trucks ${ }^{1}$			567,862	584,787			13,974		96,510		171,027	897,655	1,166,010
Tons of goods ${ }^{2}$													
Value [Millions $\$$ ] moved by truck ${ }^{2}$													
Number of passenger vehides ${ }^{1}$	7,475,189		13,070,374	6,170,336	283,974	283,974	940,628	66,444	3,083,494	1,907,706	3,464,581		
Number of buses ${ }^{1}$	48		12,462	293			592	0	11,317	3,308	973	480	
\#passenger vehicles \& buses ${ }^{1}$	7,475,237		13,082,836	6,170,629	283,974	283,974	941,220	66,444	3,094,811	1,911,014	3,465,554	480	
Number of rail cars													


	Santa Fe   [El Paso]	Stanton [EI Paso]	Br of America [El Paso]	Ysleta [El Paso]	Fabens [EI   Paso]	Ft   Hancock	Presido ${ }^{5}$	Amistad Dam [Del Rio]	Del Rio	Eagle   Pass I	$\begin{aligned} & \text { Eagle } \\ & \text { Pass II } \end{aligned}$	Columbia [Laredo]	WId Trade Br [Laredo]
Volume of tons moved by rail ${ }^{2}$	1,082,006										1,337,598		
Number of TEUs moved by rail													
Value [Millions \$] moved by rail ${ }^{2}$	\$2,776.1										\$2,133.0		
Percent Change in	OE Data:	0 to 2020											
Number trucks ${ }^{3}$													
Tons of goods ${ }^{4}$													
Value [Millions \$] moved by truck ${ }^{4}$													
Number of passenger vehicles													
Number of buses													
\#passenger vehicles \& buses ${ }^{3}$													
Number of rail cars													
Volume of tons moved by rail ${ }^{4}$	60.7\%										60.7\%		
Number of TEUs moved by rail													
Value [Millions \$] moved byrail ${ }^{4}$	165.3\%										165.3\%		

Notes:
Number of trucks = northbound trucks that cross the US-M exico border
Tons of goods = carried by northbound trucksthat cross the US-M exico border.
Value [Millions $\$$ ] moved by truck = value of goods moved by northbound trucks that cross the US-Mexico border.
Number of passenger vehides = northbound passenger vehidesthat cross the US-M exico border.
Number of buses = northbound buses that cross the US-M exico border.
Number passenger vehicles \& buses = sum of northbound passenger vehicles and buses that cross the USMexico border.
Number of rail cars = northbound rail cars that cross the US-Mexico border.
Volume of tonsmoved by rail =transported by northbound rail cars that cross the US-Mexico border.
Number of TEUs moved by rail =Twenty foot Equivalent containers [TEUs] moved by rail that are northbound and crossthe US-M exico border.
Value [Millions $\$$ ] moved by rail = value of goods transported by northbound rail cars that cross the US-M exico border.
Cells are X out when no totals are intended. Rail data, for example, are assigned to corridors by the BINS State Technical Committee
This makes railroads different from airports, maritime ports, passenger vehicles \& buses, and trucks that are summed and distributed to the corridors using the distribution of AADT.

Sources:
1 From the Texas BINSTechnical Committee representative.
2 Derived by multiplying the 2000 data by the appropriate growth rate.
${ }^{3}$ Calculated by subtracting the 2000 data from the 2020 projections, and dividing the result by the 2000 data.
4 The growth rates for tons and dollars are derived from data published by the Office of Freight Management and Operations, FHWA, USDepartment of Transportation, "Freight Transportation Profile-Texas". There are absolute values forecast for the year 2020 for tons and dollars with 1998 data as the base year. Growth rates are calculated for the 22 year period, and 20 year growth rates are estimated. These 20 -year growth rates are the ones used in thistable. For trucks, the compound annual growth rate for tonnage is $2.9 \%$ and for value is $5.5 \%$. For rail, the compound annual growth rate for tonnage is $2.4 \%$ and for value is $5.0 \%$.
5 The rail border crossing at Presidio has been inactive since 1998. In that year, the South Orient Railroad Company filed an abandonment application with the Surface Transportation Board for the rail line. The abandonment was denied, but SORC was granted permission to discontinue service to the border. According to SORC'sabandonment application, 1,910 rail cars were interchanged at Presidio in 1996 (valued at $\$ 35.6$ million), dropping to 857 in 1997 (valued at $\$ 22.7$ million). The state of Texas purchased the South Orient line from San Angelo Junction (near Coleman) to Presidio early in 2001, and leased operationsto Texas Pacifico Transportation (TXPF). TXPF is in the processof rehabilitating the infrastructure and has committed to resuming service to the border at Presidio by January 2004. TXPF has not developed traffic projections at this time for rail cars crossing the border, but are in negotiations with shippers and interchanging railroads (Ferromex at Presidio; BNSF, \& Fort Worth and Western at San Angelo Junction) to develop traffic along the route. Local groups and agencies such as La Entrada al Pacifico Rural Rail District, PecosCounty Rural Rail District, and Presidio County Rural Rail District are also promoting rail service along the line.

Table 7b
Land Ports of Entry [POE] Crossing Data

	Laredo I	Laredo   II	Falcon Dam	Roma	Rio Grande	Los   Ebanos	Hidalgo	Pharr	Progreso	Los Indios [Brownsville]	[Brownsville]	Gateway [Brownsville]	Veterans [Brownsville]
Federal inspection facilities at POE?	Yes												
Northbound POE Crossing Data for $2000{ }^{1}$													
Number trucks	0	0	452	12,824	24,065	0	0	374,150	11,461	84,422	0	0	214,816
Tons of goods	0	0	Data Not Available	14,880	121,416	0	0	1,639,561	8,561	278,277	0	0	715,570
Value [Millions \$] moved by truck	\$0.0	\$0.0	Data Not Available	\$16.0	\$116.0	\$0.0	\$0.0	\$6,374.0	\$13.0	\$1,561.6	\$0.0	\$0.0	\$4,015.4
Number of passenger vehicles	1,858,418	5,162,345	164,180	1,171,406	654,364	33,186	6,616,232	2,163,459	1,086,496	599,465	2,891,256	2,519,878	1,866,656
Number of buses	0	34,229	31	4,031	0	0	52,809	528	516	49	5	210	15,819
Number passenger vehicles \& buses	1,858,418	5,196,574	164,211	1,175,437	654,364	33,186	6,669,041	2,163,987	1,087,012	599,514	2,891,261	2,520,088	1,882,475
Number of rail cars	N/A	0	N/A		N/A	N/A							
Volume of tons moved by rail	N/A	3,606,328	N/A	319,005	N/A	N/A							
Number of TEUs moved by rail	N/A	0	N/A		N/A	N/A							
Value [Millions \$] moved by rail	N/A	\$17,004.6	N/A	\$267.5	N/A	N/A							
Northbound POE Crossing Data for 2020													
Number trucks ${ }^{1}$			723	20,518	38,504			598,640	18,338	135,075			343,706
Tons of goods ${ }^{2}$													
Value[Millions \$] moved by truck ${ }^{2}$													
Number of passenger vehides	2,973,469	8,259,752	262,688	1,874,250	1,046,982	53,098	10,585,971	3,461,534	1,738,394	959,144	4,626,010	4,031,805	2,986,650
Number of buses ${ }^{1}$		54,766	50	6,450	0		84,494	845	825	78	0	336	25,310
\#passenger vehicles \& buses ${ }^{1}$	2,973,469	8,314,518	262,738	1,880,700	1,046,982	53,098	10,670,465	3,462,379	1,739,219	959,222	4,626,010	4,032,141	3,011,960


	Laredo I	Laredo   II	Falcon Dam	Roma	Rio Grande	Los   Ebanos	Hidalgo	Pharr	Progreso	Los Indios [Brownsville]	B\&M   [Browns-   ville]	Gateway [Brownsville]	Veterans [Brownsville]
Number of rail cars													
Volume of tons moved by rail ${ }^{2}$		5,795,369									512,641		
Number of TEUs moved by rail													
Value [Millions \$] moved by rail ${ }^{2}$		\$45,113.2									\$709.7		
Percent Change in	Data: 2	0 to 2020											
Number trucks ${ }^{3}$													
Tons of goods ${ }^{4}$													
Value [Millions \$] moved by truck ${ }^{4}$													
Number of passenger vehicles													
Number of buses													
\#passenger vehides \& buses ${ }^{3}$													
Number of rail cars													
Volume of tons moved by rai ${ }^{4}$		60.7\%									60.7\%		
Number of TEUs moved by rail													
Value [Millions \$] moved by rail ${ }^{4}$		165.3\%									165.3\%		

Notes:
Number of trucks = northbound trucks that cross the US-M exico border
Tons of goods = carried by northbound trucks that crossthe US-M exico border.
Value [Millions $\$$ ] moved by truck = value of goods moved by northbound trucks that cross the US-Mexico border.
Number of passenger vehicles = northbound passenger vehides that crossthe US-M exico border.
Number of buses =northbound buses that cross the US-M exico border.
Number passenger vehicles \& buses =sum of northbound passenger vehicles and buses that cross the USM exico border.
Number of rail cars = northbound rail cars that cross the USMexico border.
Volume of tons moved by rail =transported by northbound rail cars that cross the US-Mexico border.
Number of TEUs moved by rail =Twenty foot Equivalent containers [TEUs] moved by rail that are northbound and cross the US-M exico border.
Value [Millions $\$$ ] moved by rail = value of goods transported by northbound rail cars that cross the US-Mexico border.
Cells are X out when no totals are intended. Rail data, for example, are assigned to corridors by the BINS State Technical Committee

This makes railroads different from airports, maritime ports, passenger vehides \& buses, and trucks that are summed and distributed to the corridors using the distribution of AADT. Sources:
1 From the Texas BINS Technical Committee representative.
2 Derived by multiplying the 2000 data by the appropriate growth rate.
3 Calculated by subtracting the 2000 data from the 2020 projections, and dividing the result by the 2000 data.
4 The growth rates for tons and dollars are derived from data published by the Office of Freight Management and Operations, FHWA, USDepartment of Transportation, " Freight Transportation Profile-Texas". There are absolute values forecast for the year 2020 for tons and dollars with 1998 data as the base year. Growth rates are calculated for the 22 year period, and 20 year growth rates are estimated. These 20 -year growth rates are the ones used in thistable. For trucks, the compound annual growth rate for tonnage is2.9\% and for value is $5.5 \%$. For rail, the compound annual growth rate for tonnage is $2.4 \%$ and for value is $5.0 \%$.
5 The rail border crossing at Presidio has been inactive since 1998. In that year, the South Orient Railroad Company filed an abandonment application with the Surface Transportation Board for the rail line. The abandonment was denied, but SORC was granted permission to discontinue service to the border. According to SORC's abandonment application, 1,910 rail cars were interchanged at Presidio in 1996 (valued at $\$ 35.6$ million), dropping to 857 in 1997 (valued at $\$ 22.7$ million). The state of Texas purchased the South Orient line from San Angelo Junction (near Coleman) to Presidio early in 2001, and leased operations to Texas Pacifico Transportation (TXPF). TXPF is in the process of rehabilitating the infrastructure and has committed to resuming service to the border at Presidio by January 2004. TXPF has not developed traffic projections at thistime for rail cars crossing the border, but are in negotiations with shippers and interchanging railroads (Ferromex at Presidio; BNSF, \& Fort Worth and Western at San Angelo Junction) to develop traffic along the route. Local groups and agencies such as La Entrada al Pacifico Rural Rail District, Pecos County Rural Rail Distritt, and Presidio County Rural Rail District are also promoting rail service along the line.

Table 7c
Land Ports of Entry [POE] Crossing Data

Land Ports Of Entry [POE] Crossing Data	Total
Federal inspection facilities at POE?	
Northbound POE Crossing Data for $2000{ }^{1}$	
Number trucks	2,908,332
Tons of goods	13,553,359
Value [Millions \$] moved by truck	\$62,218.7
Number of passenger vehicles	50,020,062
Number of buses	126,648
Number passenger vehicles \& buses	50,146,710
Number of rail cars	X
Volume of tons moved by rail	X
Number of TEUs moved by rail	X
Value [Millions \$] moved by rail	X
Northbound POE Crossing Data for 2020	
Number trucks ${ }^{1}$	4,653,329
Tons of goods ${ }^{2}$	24,002,999
Value [Millions \$] moved by truck ${ }^{2}$	\$181,554.2
Number of passenger vehicles ${ }^{1}$	79,606,447
Number of buses ${ }^{1}$	202,627
\#passenger vehicles \& buses ${ }^{1}$	79,809,074
Number of rail cars	X
Volume of tons moved by rail ${ }^{2}$	X
Number of TEUs moved by rail	X
Value [Millions \$] moved by rail ${ }^{2}$	X
Percent Change in POE Data: 2000 to 2020	
Number trucks ${ }^{3}$	60.0\%
Tons of goods ${ }^{4}$	77.1\%
Value [Millions \$] moved by truck ${ }^{4}$	191.8\%
Number of passenger vehicles	X
Number of buses	X
\#passenger vehicles \& buses ${ }^{3}$	59.2\%
Number of rail cars	X
Volume of tons moved by rail ${ }^{4}$	X
Number of TEUs moved by rail	X
Value [Millions \$] moved by rail ${ }^{4}$	X
Notes:	
Number of trucks = northbound trucks that cross the US-Mexico border	
Tons of goods = carried by northbound trucks that cross the US-M exico border. Value [Millions \$] moved by truck = value of goods moved by northbound trucks that cross the US-Mexico border.	

Number of passenger vehides = northbound passenger vehidesthat crossthe US-Mexico border.
Number of buses = northbound buses that cross the US-Mexico border.
Number passenger vehicles \& buses = sum of northbound passenger vehicles and buses that cross the US-M exico border.
Number of rail cars=northbound rail carsthat crossthe USMexico border.
Volume of tons moved by rail =transported by northbound rail cars that cross the US-Mexico border. Number of TEUs moved by rail =Twenty foot Equivalent containers [TEUs] moved by rail that are northbound and cross the US-Mexico border.
Value [Millions \$] moved by rail = value of goodstransported by northbound rail cars that cross the US-Mexico border.
Cells are X out when no totals are intended. Rail data, for example, are assigned to corridors by the BINS State Technical Committee
This makes railroads different from airports, maritime ports, passenger vehicles \& buses, and trucksthat are summed and distributed to the corridors using the distribution of AADT.
Sources:
1 From the Texas BINS Technical Committee representative.
2 Derived by multiplying the 2000 data by the appropriate growth rate.
3 Calculated by subtracting the 2000 data from the 2020 projections, and dividing the result by the 2000 data.
4 The growth ratesfor tons and dollars are derived from data published by the Office of Freight Management and Operations, FHWA, USDepartment of Transportation, "Freight Transportation Profile-Texas". There are absolute values forecast for the year 2020 for tons and dollars with 1998 data as the base year. Growth rates are calculated for the 22 year period, and 20 year growth rates are estimated. These 20 -year growth rates are the ones used in this table. For trucks, the compound annual growth rate for tonnage is $2.9 \%$ and for value is $5.5 \%$. For rail, the compound annual growth rate for tonnage is $2.4 \%$ and for value is $5.0 \%$.
5 The rail border crossing at Presidio has been inactive since 1998. In that year, the South Orient Railroad Company filed an abandonment application with the Surface Transportation Board for the rail line. The abandonment was denied, but SORC was granted permission to discontinue service to the border. According to SORC's abandonment application, 1,910 rail cars were interchanged at Presidio in 1996 (valued at \$35.6 million), dropping to 857 in 1997 (valued at $\$ 22.7$ million). The state of Texas purchased the South Orient line from San Angelo Junction (near Coleman) to Presidio early in 2001, and leased operationsto Texas Pacifico Transportation (TXPF). TXPF is in the process of rehabilitating the infrastructure and has committed to resuming service to the border at Presidio by January 2004. TXPF has not developed traffic projections at this time for rail cars crossing the border, but are in negotiations with shippers and interchanging railroads (Ferromex at Presidio; BNSF, \& Fort Worth and Western at San Angelo Junction) to develop traffic along the route. Local groups and agencies such as La Entrada al Pacifico Rural Rail District, PecosCounty Rural Rail District, and Presidio County Rural Rail District are also promoting rail service along the line.

Table 8
Airport Data

	Brownsville	Del Rio	El Paso	Laredo	M averick	McAllenMiller	Presidio Lely	Rio Grande	Total
Within 100 km of the US-Mexico Border?	Y	Y	Y	Y	Y	Y	Y	Y	
Designated as an International POE?	Y	Y	Y	Y	Y	Y	Y	Y	
Historical Data for 2000									
Longest runway length, in feet	7,400	5,000	11,010	8,236	5,500	7,120	5,200	8,299	11,010
Tons of goods exported \& imported	65,408	NA	318,645	218,155	NA	NA	NA	69,164	671,372
Airport served by railroad facility?	N	N	N	N	N	N	N	N	
If yes, name of railroad									
On-land movement of air freight									
Share of goods moved by truck									
Share of goods moved by railroad									
Projections for 2020									
Longest runway length	7,400	6,300	11,010	8,236	5,500	7,120	5,200	8,299	11,010
Date becomes operational		2004							
Tons of goods exported \& imported									1,558,254
Airport served by railroad facility?									
If yes, name of railroad									
On-land movement of air freight									
Share of goods moved by truck									
Share of goods moved by railroad									
Percent Change: 2000 to 2020									
Longest runway length									
Tons of goods exported \& imported									132.1\%

Airports Not Meeting Minimum Criteria:
Cameron County Airport, Corpus Christi International Airport, Crystal City Municipal Airport, Dimmit County Airport, Edinburg Airport, Mid Valley Airport, Starr County Airport, Terrell County Airport and Zapata County Airport - none of these are included in the analysis.

Source:
Runway Dimensions \& 2000 Tonnage: Texas BINSTechnical Committee representative.
Percent Change: 2000 to 2020 The growth rate for air tonnage is derived from data published by the Office of Freight Management and Operations, FHWA, USDepartment of Transportation, "Freight Transportation Profile- Texas". There are absolute values forecast for the year 2020 tons with 1998 data asthe base year. The Growth rate is calculated for the 22 year period, and a 20 year growth rates is estimated. This 20 -year growth rates is the one used in this table. For air tonnage, the compound annual growth rate is $4.3 \%$.
2020 Tonnage
Obtained by multiplying the growth rate by the 2000 tonnage.

Table 9
Maritime Port Data

	Port of Brownsville			
Within 100 km of the US-M exico Border?	Yes			
Designated as an International POE?	Yes			
	2000	2020	Changes 2000 to 2020	
			Absolute	Percent
Main Channel Depth, in feet	42	55	13	31.0\%
Total tons of goods exported \& imported ${ }^{1}$	5.25	10.00	4.75	90.6\%
Total number TEUs exported \& imported	0	100,000	100,000	+\%
Maritime ports served by railroad facility?	Yes			
If yes, name of railroad	Brownsville Rio Grande International			
On-land movement of air freight	X	X	X	X
Share of goods moved by truck	65.0\%	50.0\%		
Share of goods moved by railroad	35.0\%	50.0\%		

Notes:
1 millions of metric tons
The number of TEU's increased from zero so no calculation is made for the percent increase.
Maritime Ports Not Meeting Minimum Criteria: The Ports of Houston, Texas City, Freeport, Galveston, Corpus Christi, Port Arthur and Beaumont are not included in the analysis because they are not within 100 km of the US-Mexico border

Sources: Texas BINS Technical Committee representative.


## TEXAS HIGHWAY DATA

## Methodology For Calculating Corridor Averages for Average Annual Daily Traffic [AADT], Level of Service [LOS], and Peak Hour Traffic Carrying Capacity

Corridor totals for highways are obtained for highway length, AADT, LOS and Peak Hour Traffic Carrying Capacity. The corridor total for each of these indicators is obtained by adding the data for each of the highways assigned to the corridor. The State BINS Technical Committee representative assigned the highways to the corridors. Each of the compilations for each of the indicators is now reviewed.

HIGHWAY LENGTH—the length of each highway within the 100 km limit. The length is obtained for each highway by subtracting the beginning mile marker, from the last mile marker. If segments are omitted, those segments and their data are omitted from the highway total. The highway length for the entire corridor is obtained by summing the highway length for each highway in the corridor.

WEIGHTED AVERAGE—an average in which each of the observations is multiplied [or "weighted"] by a factor before calculations. In addition, these weights sum to unity or one [1]. Weighted averages are used so that short and long segments of roadway are counted proportionately in calculating the average for the entire highway.

AVERAGE ANNUAL DAILY TRAFFIC—the weighted average AADT for each highway is obtained in several steps. Step 1: obtain the segment weights by dividing each segment length by the total highway length. The percent of the highway contained in the segment under investigation is the highway weight. Step 2: This highway weight is then multiplied by the AADT for that segment to obtain the weighted AADT for the segment. Step 3: The weighted AADT for all the segments are summed to obtain the weighted average AADT for the highway. The weighted average AADT for all the highways in the corridor are then summed to obtain the Corridor Total AADT.

LEVEL OF SERVICE - the weighted average LOS for each highway is calculated in the same manner as that used for AADT. A major difference is that LOS is provided in the letters $A, B, C, D, E, F 0, F 1, F 2$ and F3. These letters are converted to numbers using the following system, $A=1, B=2, C=3, D=4, E=5, F 0=6$, $F 1=7, F 2=8$, and $F 3=9$. After the conversions the following steps are used to calculate LOS for each highway. Step 1: obtain the segment weights by dividing each segment length by the total highway length. The percent of the highway contained in the segment under investigation is the highway weight. Step 2: This highway weight is then multiplied by the LOS number for that segment to obtain the weighted LOS number for the segment. Step 3: The weighted LOS number for all the segments are summed to obtain the weighted average LOS for the highway. The weighted average LOS number for all the highways in the corridor are then summed to obtain the Corridor Total LOS.

PEAK HOUR TRAFFIC CARRYING CAPACITY [PCAP]-the weighted average PCAP for each highway is obtained in several steps. Step 1: obtain the segment weights by dividing each segment length by the total highway length. The percent of the highway contained in the segment under investigation is the highway weight. Step 2: This highway weight is then multiplied by the PCAP for that segment to obtain the weighted PCAP for the segment. Step 3: The weighted PCAP for all the segments are summed to obtain the weighted average PCAP for the highway. The weighted average PCAP for all the highways in the corridor are then summed to obtain the Corridor Total PCAP.

## HIGHWAY DATA COMPILED INTO CORRIDOR FORM USED IN TABLE 5 OF CORRIDOR EVALUATION FOR TEXAS

Segment Length Is the Basis for Estimating The Weighted Average for AADT, Los And Capacity.

Table 1
Summary Corridor Results


## THE IH-10 CORRIDOR: CALENDAR YEAR 2000 DATA

Table 2a
Interstate 10, Calendar Year 2000 Data

Interstate 10				
Within 100 km of the US-M exico Border?				Y
Serves an International POE?				Y
Segment \#	Begin Post Mile	End Post Mile	Length Miles	Avg Ann Daily   Traffic   31.120
1	0.000	0.218	0.218	31,120
2	0.218	2.964	2.746	35,150
3	2.964	6.364	3.400	40,740
4	6.364	9.200	2.836	48,020
5	9.200	11.174	1.974	63,280
6	11.174	13.289	2.115	79,730
7	13.289	13.488	0.199	93,660
8	13.488	16.050	2.562	109,940
9	16.050	18.092	2.042	118,690
10	18.092	19.419	1.327	121,290
11	19.419	21.462	2.043	155,410
12	21.462	21.641	0.179	163,160
13	22.387	22.479	0.092	163,160
14	22.479	22.829	0.350	163,930
15	22.829	23.335	0.506	163,930
16	23.335	24.562	1.227	200,180
17	24.562	25.499	0.937	188,390
18	25.499	26.411	0.912	192,310
19	26.411	27.437	1.026	181,440
20	27.437	28.977	1.540	136,280
21	28.977	29.726	0.749	136,280
22	29.726	30.701	0.975	140,540
23	30.701	33.016	2.315	56,630
24	33.013	34.751	1.738	55,570
25	34.751	38.689	3.938	32,000
26	38.689	43.602	4.913	19,190
27	43.602	50.276	6.674	17,550
28	50.276	50.470	0.194	15,760
29	50.470	56.322	5.852	15,760
30	56.322	62.524	6.202	13,930
31	0.000	10.752	10.752	13,900
32	10.752	16.915	6.163	13,300
33	16.915	26.069	9.154	13,300
		Sum	87.850	2,993,520


Estimating the Weighted Averages		
Interstate 10		
Segment	Weight	AADT
1	0.2\%	77
2	3.1\%	1,099
3	3.9\%	1,577
4	3.2\%	1,550
5	2.2\%	1,422
6	2.4\%	1,920
7	0.2\%	212
8	2.9\%	3,206
9	2.3\%	2,759
10	1.5\%	1,832
11	2.3\%	3,614
12	0.2\%	332
13	0.1\%	171
14	0.4\%	653
15	0.6\%	944
16	1.4\%	2,796
17	1.1\%	2,009
18	1.0\%	1,996
19	1.2\%	2,119
20	1.8\%	2,389
21	0.9\%	1,162
22	1.1\%	1,560
23	2.6\%	1,492
24	2.0\%	1,099
25	4.5\%	1,434
26	5.6\%	1,073
27	7.6\%	1,333
28	0.2\%	35
29	6.7\%	1,050
30	7.1\%	983
31	12.2\%	1,701
32	7.0\%	933
33	10.4\%	1,386
Sum	100.0\%	47,921
Source: Texas BINS Technical Committee representative		

Table 2b
United States 62, Calendar Year 2000 Data

United States 62				
Within 100 km of the US-Mexico Border?				Y
Serves an International POE?				Y
Segment \#	Begin Post Mile	End Post Mile	Length Miles	Avg Ann Daily Traffic
1	5.719	6.221	0.502	21,000
2	6.221	8.202	1.981	23,000
3	8.202	9.606	1.404	22,000
4	9.606	10.333	0.727	19,500
5	10.333	10.792	0.459	13,000
6	10.792	10.900	0.108	37,000
7	0.821	1.248	0.427	14,100
8	12.640	13.160	0.520	37,000
9	13.160	15.386	2.226	34,000
10	15.385	16.296	0.911	45,000
11	16.296	16.772	0.476	42,000
12	16.772	18.315	1.543	38,000
13	18.315	21.602	3.287	20,000
14	21.602	24.843	3.241	10,700
15	24.843	31.176	6.333	16,000
16	31.176	32.273	1.097	3,000
17	32.273	33.672	1.399	3,000
18	33.672	37.919	4.247	1,900
19	0.000	13.974	13.974	1,850
20	13.974	28.763	14.789	1,850
21	30.000	33.089	3.089	1,850
		Sum	62.740	405,750


Estimating the Weighted Averages		
United States 62		
Segment	Weight	AADT
1	0.8\%	168
2	3.2\%	726
3	2.2\%	492
4	1.2\%	226
5	0.7\%	95
6	0.2\%	64
7	0.7\%	96
8	0.8\%	307
9	3.5\%	1,206
10	1.5\%	653
11	0.8\%	319
12	2.5\%	935
13	5.2\%	1,048
14	5.2\%	553
15	10.1\%	1,615
Segment	Weight	AADT
16	1.7\%	52
17	2.2\%	67
18	6.8\%	129
19	22.3\%	412
20	23.6\%	436
21	4.9\%	91
Sum	100.0\%	9,690
: Texas BIN	tee repr	

Table 2c
Interstate 110, Calendar Year 2000 Data

Interstate 110				
Within 100 km of the US-M exico Border?				Y
Serves an International POE?				Y
Segment \#	Begin Post Mile	End Post Mile	Length Miles	Avg Ann Daily Traffic
1	5.019	5.505	0.486	31,430
2	5.505	5.938	0.433	48,960
Sum			0.919	80,390
Estimating the Weighted Averages				
Interstate 110				
Segment		Weight		AADT
1		52.9\%		16,621
2		47.1\%		23,068
Sum		100.0\%		39,690
Source: Texas BINS Technical Committee representative				

Table 2d
United States 85, Calendar Year 2000 Data

United States 85				
Within 100 km of the US-Mexico Border?				Y
Serves an International POE?				Y
$\underset{\#}{\text { Segment }}$	Begin Post Mile	$\begin{aligned} & \text { End Post } \\ & \text { Mile } \end{aligned}$	Length Miles	Avg Ann Daily Traffic
1	1.105	2.512	1.407	27,000
2	2.512	4.132	1.620	23,000
3	4.132	5.719	1.587	21,000
4	0.089	0.633	0.544	15,000
5	0.633	1.105	0.472	19,740
Sum			5.630	105,740
Estimating the Weighted Averages				
United States 85				
Segment		Weight		AADT
1		25.0\%		6,748
2		28.8\%		6,618
3		28.2\%		5,920
4		9.7\%		1,449
5		8.4\%		1,655
Sum		100.0\%		22,390
Source: Texas BINS Technical Committee representative				

Table 2 e
Loop 375, Calendar Year 2000 Data

Loop 375				
Within 100 km of the US-Mexico Border?				Y
Serves an International POE?				Y
$\underset{\#}{\text { Segment }}$	Begin Post Mile	End Post Mile	Length Miles	Avg Ann Daily Traffic
1	0.000	1.000	1.000	9,300
2	1.000	7.200	6.200	8,300
3	7.200	11.699	4.499	8,400
4	11.699	13.579	1.880	15,300
5	13.579	13.700	0.121	8,900
6	13.700	14.670	0.970	4,170
7	14.670	14.816	0.146	6,780
8	14.816	20.132	5.316	6,780
9	20.132	25.430	5.298	10,800
10	5.000	7.590	2.590	12,100
11	7.590	8.104	0.514	18,000
12	8.104	12.598	4.494	42,000
13	12.598	13.915	1.317	36,980
14	13.915	14.865	0.950	22,680
15	14.865	15.123	0.258	23,000
16	15.123	16.346	1.223	13,970
17	0.509	3.793	3.284	28,000
18	3.793	8.147	4.354	30,000
19	8.147	10.065	1.918	33,000
20	10.065	12.119	2.054	16,400
21	12.119	12.684	0.565	13,000
22	12.684	12.947	0.263	9,000
			49.214	376,860


Estimating the Weighted Averages		
Loop 375		
Segment	Weight	AADT
1	2.0\%	189
2	12.6\%	1,046
3	9.1\%	768
4	3.8\%	584
5	0.2\%	22
6	2.0\%	82
7	0.3\%	20
8	10.8\%	732
9	10.8\%	1,163
10	5.3\%	637
11	1.0\%	188
12	9.1\%	3,835
13	2.7\%	990
14	1.9\%	438
Segment	Weight	AADT
15	0.5\%	121
16	2.5\%	347
17	6.7\%	1,868
18	8.8\%	2,654
19	3.9\%	1,286
20	4.2\%	684
21	1.1\%	149
22	0.5\%	48
Sum	100.0\%	17,852
as BINS Te	resentat	

## THE IH-10 CORRIDOR: CALENDAR YEAR 2020 DATA

Table 3a
Interstate 10, Calendar Year 2020 Data

Interstate 10				
Within 100 km of the US-M exico Border?				Y
Serves an International POE?				Y
Segment \#	Begin Post Mile	End Post Mile	Length Miles	Avg Ann Daily Traffic
1	0.000	0.218	0.218	60,650
2	0.218	2.964	2.746	64,130
3	2.964	6.364	3.400	70,260
4	6.364	9.200	2.836	82,340
5	9.200	11.174	1.974	121,590
6	11.174	13.289	2.115	144,370
7	13.289	13.488	0.199	139,750
8	13.488	16.050	2.562	166,020
9	16.050	18.092	2.042	179,210
10	18.092	19.419	1.327	175,880
11	19.419	21.462	2.043	218,710
12	21.462	21.641	0.179	228,670
13	22.387	22.479	0.092	228,670
14	22.479	22.829	0.350	229,500
15	22.829	23.335	0.506	248,160
16	23.335	24.562	1.227	283,480
17	24.562	25.499	0.937	269,510
18	25.499	26.411	0.912	274,700
19	26.411	27.437	1.026	254,020
20	27.437	28.977	1.540	213,140
21	28.977	29.726	0.749	213,050
22	29.726	30.701	0.975	231,160
23	30.701	33.016	2.315	80,410
24	33.013	34.751	1.738	78,910
25	34.751	38.689	3.938	45,440
26	38.689	43.602	4.913	27,250
27	43.602	50.276	6.674	36,410
28	50.276	50.470	0.194	31,180
29	50.470	56.322	5.852	31,180
30	56.322	62.524	6.202	28,960
31	0.000	10.752	10.752	28,940
32	10.752	16.915	6.163	25,700
33	16.915	26.069	9.154	25,700
		Sum	87.850	4,537,050


Estimating the Weighted Averages		
Interstate 10		
Segment	Weight	AADT
1	0.2\%	151
2	3.1\%	2,005
3	3.9\%	2,719
4	3.2\%	2,658
5	2.2\%	2,732
6	2.4\%	3,476
7	0.2\%	317
8	2.9\%	4,842
9	2.3\%	4,166
10	1.5\%	2,657
11	2.3\%	5,086
12	0.2\%	466
13	0.1\%	239
14	0.4\%	914
15	0.6\%	1,429
16	1.4\%	3,959
17	1.1\%	2,875
18	1.0\%	2,852
19	1.2\%	2,967
20	1.8\%	3,736
21	0.9\%	1,816
22	1.1\%	2,566
23	2.6\%	2,119
24	2.0\%	1,561
25	4.5\%	2,037
26	5.6\%	1,524
27	7.6\%	2,766
28	0.2\%	69
29	6.7\%	2,077
30	7.1\%	2,045
31	12.2\%	3,542
32	7.0\%	1,803
33	10.4\%	2,678
Sum	100.0\%	76,847
Texas BINS	resentat	

Table 3b
United States 62, Calendar Year 2020 Data

United States 62				
Within 100 km of the US-M exico Border?				Y
Serves an International POE?				Y
Segment \#	Begin Post Mile	End Post Mile	Length Miles	Avg Ann Daily Traffic
1	5.719	6.221	0.502	29,400
2	6.221	8.202	1.981	32,200
3	8.202	9.606	1.404	30,800
4	9.606	10.333	0.727	27,300
5	10.333	10.792	0.459	18,200
6	10.792	10.900	0.108	51,800
7	0.821	1.248	0.427	19,740
8	12.640	13.160	0.520	51,800
9	13.160	15.386	2.226	47,600
10	15.385	16.296	0.911	63,000
11	16.296	16.772	0.476	58,800
12	16.772	18.315	1.543	53,200
13	18.315	21.602	3.287	47,460
14	21.602	24.843	3.241	21,930
15	24.843	31.176	6.333	35,790
16	31.176	32.273	1.097	4,340
17	32.273	33.672	1.399	4,340
18	33.672	37.919	4.247	2,660
19	0.000	13.974	13.974	2,590
20	13.974	28.763	14.789	2,590
21	30.000	33.089	3.089	2,590
		Sum	62.740	608,130


Estimating the Weighted Averages		
United States 62		
Segment	Weight	AADT
1	0.8\%	235
2	3.2\%	1,017
3	2.2\%	689
4	1.2\%	316
5	0.7\%	133
6	0.2\%	89
7	0.7\%	134
8	0.8\%	429
9	3.5\%	1,689
10	1.5\%	915
11	0.8\%	446
12	2.5\%	1,308
13	5.2\%	2,486
14	5.2\%	1,133
15	10.1\%	3,613
Segment	Weight	AADT
16	1.7\%	76
17	2.2\%	97
18	6.8\%	180
19	22.3\%	577
20	23.6\%	611
21	4.9\%	128
Sum	100.0\%	16,301
Source: Texas BINS Technical Committee representative		

Table 3c
Interstate 110, Calendar Year 2020 Data

Interstate 110				
Within 100 km of the US-M exico Border?				Y
Serves an International POE?				Y
Segment \#	Begin Post Mile	End Post Mile	Length Miles	Avg Ann Daily Traffic
1	5.019	5.505	0.486	44,630
2	5.505	5.938	0.433	69,520
Sum			0.919	114,150
Estimating the Weighted Averages				
Interstate 110				
Segment		Weight		AADT
1		52.9\%		23,602
2		47.1\%		32,755
Sum		100.0\%		56,357
Source: Texas BINS Technical Committee representative				

Table 3d
United States 85, Calendar Year 2020 Data

United States 85				
Within 100 km of the US-Mexico Border?				Y
Serves an International POE?				Y
$\begin{gathered} \text { Segment } \\ \# \end{gathered}$	Begin Post Mile	$\begin{aligned} & \text { End Post } \\ & \text { Mile } \end{aligned}$	Length Miles	Avg Ann Daily Traffic
1	1.105	2.512	1.407	43,150
2	2.512	4.132	1.620	34,670
3	4.132	5.719	1.587	39,340
4	0.089	0.633	0.544	25,120
5	0.633	1.105	0.472	27,640
Sum			5.630	169,920
Estimating the Weighted Averages				
United States 85				
Segment		Weight		AADT
1		25.0\%		10,784
2		28.8\%		9,976
3		28.2\%		11,089
4		9.7\%		2,427
5		8.4\%		2,317
Sum		100.0\%		36,593
Source: Texas BINSTechnical Committee representative				

Table 3e
Loop 375, Calendar Year 2020 Data

Loop 375				
Within 100 km of the US-Mexico Border?				Y
Serves an International POE?				Y
$\underset{\#}{\text { Segment }}$	Begin Post Mile	End Post Mile	Length Miles	$\underset{\text { Traffic }}{\text { Avg Ann Daily }}$
1	0.000	1.000	1.000	16,090
2	1.000	7.200	6.200	17,530
3	7.200	11.699	4.499	16,000
4	11.699	13.579	1.880	24,530
5	13.579	13.700	0.121	12,460
6	13.700	14.670	0.970	5,840
7	14.670	14.816	0.146	9,490
8	14.816	20.132	5.316	9,490
9	20.132	25.430	5.298	28,880
10	5.000	7.590	2.590	36,300
11	7.590	8.104	0.514	54,000
12	8.104	12.598	4.494	110,580
13	12.598	13.915	1.317	85,280
14	13.915	14.865	0.950	43,330
15	14.865	15.123	0.258	52,070
16	15.123	16.346	1.223	19,560
17	0.509	3.793	3.284	57,220
18	3.793	8.147	4.354	45,560
19	8.147	10.065	1.918	46,650
20	10.065	12.119	2.054	22,960
21	12.119	12.684	0.565	20,410
22	12.684	12.947	0.263	12,600
Sum			49.214	746,830


Estimating the Weighted Averages		
Loop 375		
Segment	Weight	AADT
1	2.0\%	327
2	12.6\%	2,208
3	9.1\%	1,463
4	3.8\%	937
5	0.2\%	31
6	2.0\%	115
7	0.3\%	28
8	10.8\%	1,025
9	10.8\%	3,109
10	5.3\%	1,910
11	1.0\%	564
12	9.1\%	10,098
13	2.7\%	2,282
14	1.9\%	836
Segment	Weight	AADT
15	0.5\%	273
16	2.5\%	486
17	6.7\%	3,818
18	8.8\%	4,031
19	3.9\%	1,818
20	4.2\%	958
21	1.1\%	234
22	0.5\%	67
Sum	100.0\%	36,620
Source: Texas BINS Techn		

THE IH-35 CORRIDOR: CALENDAR YEAR 2000 DATA

Table 4a
Interstate 35, Calendar Year 2000 Data

Interstate 35				
Within 100 km of the US-M exico Border?				Y
Serves an International POE?				Y
Segment \#	Begin Post Mile	End Post Mile	Length Miles	Avg Ann Daily Traffic
1	20.060	20.660	0.600	16,000
2	0.880	2.669	1.789	46,370
3	2.669	4.090	1.421	56,910
4	4.090	5.025	0.935	59,020
5	5.025	5.472	0.447	37,430
6	5.472	7.525	2.053	23,170
7	7.525	11.968	4.443	16,080
8	0.000	1.904	1.904	16,080
9	1.904	7.185	5.281	13,580
10	7.185	8.274	1.089	12,990
11	8.278	15.523	7.245	12,990
12	15.523	16.980	1.457	12,180
13	16.980	26.869	9.889	12,180
14	20.343	21.442	1.099	11,960
15	21.442	25.908	4.466	10,900
16	25.908	38.086	12.178	11,000
17	20.087	20.862	0.775	9,680
18	14.340	20.087	5.747	10,840
19	10.154	14.307	4.153	11,080
			66.971	400,440


Estimating the Weighted Averages		
Interstate 35		
Segment	Weight	AADT
1	0.9\%	143
2	2.7\%	1,239
3	2.1\%	1,208
4	1.4\%	824
5	0.7\%	250
6	3.1\%	710
7	6.6\%	1,067
8	2.8\%	457
9	7.9\%	1,071
10	1.6\%	211
11	10.8\%	1,405
12	2.2\%	265
Segment	Weight	AADT
13	14.8\%	1,799
14	1.6\%	196
15	6.7\%	727
16	18.2\%	2,000
17	1.2\%	112
18	8.6\%	930
19	6.2\%	687
Sum	100.0\%	15,301
Source: Texas BINS Techn		

Table 4b
United States 90, Calendar Year 2000 Data

United States 90				
Within 100 km of the US-M exico Border?				Y
Serves an International POE?				Y
Segment \#	Begin Post Mile	End Post Mile	Length Miles	Avg Ann Daily Traffic
1	1.714	2.521	0.807	17,500
2	2.521	4.155	1.634	17,100
3	4.155	5.118	0.963	14,700
4	5.118	6.948	1.830	9,200
5	6.948	12.876	5.928	4,500
6	0.000	6.312	6.312	3,400
7	6.312	14.781	8.469	3,200
8	14.781	16.834	2.053	3,200
9	16.834	17.601	0.767	3,800
10	17.601	17.938	0.337	3,100
11	17.938	18.478	0.540	3,800
12	18.478	18.711	0.233	5,000
13	18.711	19.333	0.622	3,600
14	19.333	32.107	12.774	3,000
15	32.107	32.520	0.413	2,900
16	32.520	38.000	5.480	3,100
17	69.304	69.655	0.351	5,400
18	69.655	71.838	2.183	7,700
19	71.838	72.615	0.777	29,000
20	72.615	73.193	0.578	30,000
21	73.193	73.738	0.545	26,000
22	73.738	74.081	0.343	22,000
23	50.875	51.347	0.472	1,900
24	51.347	62.249	10.902	2,100
25	62.249	67.029	4.780	2,500
26	67.029	69.304	2.275	5,400
27	42.830	50.870	8.040	1,900
28	0.000	1.364	1.364	1,700
29	1.364	9.329	7.965	1,750
30	9.329	10.533	1.204	1,850
31	10.533	10.973	0.440	1,900
32	12.896	21.631	8.735	1,700
33	0.000	3.174	3.174	1,650
34	3.174	11.896	8.722	1,700
35	0.000	11.291	11.291	1,650
36	42.773	52.258	9.485	1,650
37	32.750	40.216	7.466	1,650
38	40.216	42.754	2.538	1,650
39	25.351	32.750	7.399	1,600
40	13.050	14.859	1.809	1,650


41	14.859	18.160	3.301	1,600
Segment \#	Begin Post Mile	End Post Mile	Length Miles	Avg Ann Daily Traffic
42	18.160	24.926	6.766	1,600
43	1.000	11.257	10.257	550
44	11.257	12.118	0.861	760
45	12.118	12.537	0.419	2,600
46	12.537	12.820	0.283	2,600
47	12.820	13.002	0.182	2,600
48	13.002	14.005	1.003	2,600
		Sum	175.072	272,010
Estimating the Weighted Averages				
United States 90				
Segment		Weight		AADT
1		0.5\%		81
2		0.9\%		160
3		0.6\%		81
4		1.0\%		96
5		3.4\%		152
6		3.6\%		123
7		4.8\%		155
8		1.2\%		38
9		0.4\%		17
10		0.2\%		6
11		0.3\%		12
12		0.1\%		7
13		0.4\%		13
14		7.3\%		219
15		0.2\%		7
16		3.1\%		97
17		0.2\%		11
18		1.2\%		96
19		0.4\%		129
20		0.3\%		99
21		0.3\%		81
22		0.2\%		43
23		0.3\%		5
24		6.2\%		131
25		2.7\%		68
26		1.3\%		70
27		4.6\%		87
28		0.8\%		13
29		4.5\%		80
30		0.7\%		13
31		0.3\%		5
32		5.0\%		85
33		1.8\%		30
34		5.0\%		85
35		6.4\%		106


36	$5.4 \%$	89
Segment	Weight	AADT
37	$4.3 \%$	70
38	$1.4 \%$	24
39	$4.2 \%$	68
40	$1.0 \%$	17
41	$1.9 \%$	30
42	$3.9 \%$	62
43	$5.9 \%$	32
44	$0.5 \%$	4
45	$0.2 \%$	6
46	$0.2 \%$	4
47	$0.1 \%$	3
48	$0.6 \%$	15
Sum	$100.0 \%$	1,725
Source: Texas BINS Technical Committee representative		

Table 4c
State Spur 20, Calendar Year 2000 Data

State Spur 20				
Within 100 km of the US-M exico Border?				Y
Serves an International POE?				Y
$\underset{\#}{\text { Segment }}$	Begin Post Mile	End Post Mile	Length Miles	Avg Ann Daily Traffic
1	0.000	1.594	1.594	19,400
2	0.000	1.056	1.056	13,900
3	1.056	4.377	3.321	7,700
4	4.377	8.729	4.352	15,800
5	8.729	10.000	1.271	20,000
6	10.000	10.923	0.923	20,000
7	10.923	11.397	0.474	15,600
8	11.397	12.542	1.145	13,800
Sum			14.136	126,200
Estimating the Weighted Averages				
State Spur 20				
Segment		Weight		AADT
1		11.3\%		174
2		7.5\%		371
	3	23.5\%		163
	4	30.8\%		221
	5	9.0\%		133
	6	6.5\%		613
	7	3.4\%		1,035
	8	8.1\%		392
Sum		100.0\%		3,103
Source: Texas BINS Technical Committee representative				

THE IH-35 CORRIDOR: CALENDAR YEAR 2020 DATA

Table 5a
Interstate 35, Calendar Year 2020 Data

Interstate 35				
Within 100 km of the US-M exico Border?				Y
Serves an International POE?				Y
$\begin{gathered} \text { Segment } \\ \# \end{gathered}$	Begin Post Mile	End Post Mile	Length Miles	Avg Ann Daily Traffic
1	20.060	20.660	0.600	22,400
2	0.880	2.669	1.789	72,980
3	2.669	4.090	1.421	107,770
4	4.090	5.025	0.935	119,070
5	5.025	5.472	0.447	64,380
6	5.472	7.525	2.053	51,420
7	7.525	11.968	4.443	39,900
8	0.000	1.904	1.904	39,900
9	1.904	7.185	5.281	27,720
10	7.185	8.274	1.089	27,470
11	8.278	15.523	7.245	27,470
12	15.523	16.980	1.457	26,130
13	16.980	26.869	9.889	26,130
14	20.343	21.442	1.099	25,930
15	21.442	25.908	4.466	21,220
16	25.908	38.086	12.178	23,030
17	20.087	20.862	0.775	21,090
18	14.340	20.087	5.747	22,980
19	10.154	14.307	4.153	23,280
		S	66.971	790,270


Estimating the Weighted Averages		
Interstate 35		
Segment	Weight	AADT
1	0.9\%	201
2	2.7\%	1,950
3	2.1\%	2,287
4	1.4\%	1,662
5	0.7\%	430
6	3.1\%	1,576
7	6.6\%	2,647
8	2.8\%	1,134
9	7.9\%	2,186
10	1.6\%	447
11	10.8\%	2,972
12	2.2\%	568
Segment	Weight	AADT
13	14.8\%	3,858
14	1.6\%	426
15	6.7\%	1,415
16	18.2\%	4,188
17	1.2\%	244
18	8.6\%	1,972
19	6.2\%	1,444
Sum	100.0\%	31,606
Source: Texas BINS Techn		

Table 5b
United States 90, Calendar Year 2020 Data

United States 90				
Within 100 km of the US-M exico Border?				Y
Serves an International POE?				Y
Segment \#	Begin Post Mile	End Post Mile	Length Miles	Avg Ann Daily Traffic
1	1.714	2.521	0.807	25,630
2	2.521	4.155	1.634	28,790
3	4.155	5.118	0.963	26,310
4	5.118	6.948	1.830	12,880
5	6.948	12.876	5.928	7,790
6	0.000	6.312	6.312	5,980
7	6.312	14.781	8.469	5,770
8	14.781	16.834	2.053	5,770
9	16.834	17.601	0.767	7,090
10	17.601	17.938	0.337	5,790
11	17.938	18.478	0.540	6,380
12	18.478	18.711	0.233	7,000
13	18.711	19.333	0.622	5,380
14	19.333	32.107	12.774	4,720
15	32.107	32.520	0.413	4,220
16	32.520	38.000	5.480	4,340
17	69.304	69.655	0.351	8,150
18	69.655	71.838	2.183	48,320
19	71.838	72.615	0.777	46,920
20	72.615	73.193	0.578	45,610
21	73.193	73.738	0.545	32,520
22	73.738	74.081	0.343	3,280
23	50.875	51.347	0.472	3,280
24	51.347	62.249	10.902	3,460
25	62.249	67.029	4.780	3,900
26	67.029	69.304	2.275	8,150
27	42.830	50.870	8.040	3,280
28	0.000	1.364	1.364	2,950
29	1.364	9.329	7.965	3,180
30	9.329	10.533	1.204	3,290
31	10.533	10.973	0.440	3,280
32	12.896	21.631	8.735	2,950
33	0.000	3.174	3.174	2,990
34	3.174	11.896	8.722	2,950
35	0.000	11.291	11.291	2,990
36	42.773	52.258	9.485	2,900
37	32.750	40.216	7.466	2,310
38	40.216	42.754	2.538	2,310


Segment \#	Begin Post	End Post Mile	Length Miles	Avg Ann Daily Traffic
39	25.351	32.750	7.399	1,600
40	13.050	14.859	1.809	1,650
41	14.859	18.160	3.301	1,600
42	18.160	24.926	6.766	1,600
43	1.000	11.257	10.257	550
44	11.257	12.118	0.861	760
45	12.118	12.537	0.419	2,600
46	12.537	12.820	0.283	2,600
47	12.820	13.002	0.182	2,600
48	13.002	14.005	1.003	2,600
		Sum	175.072	420,970
Estimating the Weighted Averages				
United States 90				
Segment		Weight		AADT
1		0.5\%		118
2		0.9\%		269
3		0.6\%		145
4		1.0\%		135
5		3.4\%		264
6		3.6\%		216
7		4.8\%		279
8		1.2\%		68
9		0.4\%		31
10		0.2\%		11
11		0.3\%		20
12		0.1\%		9
13		0.4\%		19
14		7.3\%		344
15		0.2\%		10
16		3.1\%		136
17		0.2\%		16
18		1.2\%		603
19		0.4\%		208
20		0.3\%		151
21		0.3\%		101
22		0.2\%		6
23		0.3\%		9
24		6.2\%		215
25		2.7\%		106
26		1.3\%		106
27		4.6\%		151
28		0.8\%		23
29		4.5\%		145
30		0.7\%		23
31		0.3\%		8


Segment	Weight	AADT
32	$5.0 \%$	147
33	$1.8 \%$	54
34	$5.0 \%$	147
35	$6.4 \%$	193
36	$5.4 \%$	157
37	$4.3 \%$	99
38	$1.4 \%$	33
39	$4.2 \%$	68
40	$1.0 \%$	17
41	$1.9 \%$	30
42	$3.9 \%$	62
43	$5.9 \%$	32
44	$0.5 \%$	4
45	$0.2 \%$	6
46	$0.2 \%$	4
47	$0.1 \%$	3
48	$0.6 \%$	15
Sum	$100.0 \%$	3,167
Source: Texas BINSTechnical Committee representative		

Table 5c
State Spur 20, Calendar Year 2020 Data

State Spur 20				
Within 100 km of the US-M exico Border?				Y
Serves an International POE?				Y
Segment \#	Begin Post Mile	End Post Mile	Length Miles	Avg Ann Daily Traffic
1	0.000	1.594	1.594	34,920
2	0.000	1.056	1.056	21,680
3	1.056	4.377	3.321	12,010
4	4.377	8.729	4.352	24,650
5	8.729	10.000	1.271	31,200
6	10.000	10.923	0.923	31,200
7	10.923	11.397	0.474	24,340
8	11.397	12.542	1.145	21,530
Sum			14.136	201,530
Estimating the Weighted Averages				
State Spur 20				
Segment		Weight		AADT
1		11.3\%		313
2		7.5\%		579
3		23.5\%		255
4		30.8\%		344
5		9.0\%		208
6		6.5\%		956
7		3.4\%		1,615
8		8.1\%		612
Sum		100.0\%		4,883
Source: Texas BINS Technical Committee representative				

## THE IH-69 CORRIDOR: CALENDAR YEAR 2000 DATA

Table 6a
International Highway 59, Calendar Year 2000 Data

International Highway 59				
Within 100 km of the US-M exico Border?				Y
Serves an International POE?				Y
$\begin{gathered} \text { Segment } \\ \# \end{gathered}$	Begin Post Mile	End Post Mile	Length Miles	Avg Ann Daily Traffic
1	46.140	47.558	1.418	28,000
2	44.740	46.140	1.400	23,000
3	41.351	44.740	3.389	5,400
4	28.069	41.351	13.282	3,400
5	23.364	28.069	4.705	2,700
6	15.767	23.364	7.597	2,700
7	11.627	15.767	4.140	3,500
8	2.920	11.627	8.707	2,900
9	0.003	2.920	2.917	3,100
10	0.000	0.453	0.453	5,100
11	0.453	2.984	2.531	3,900
12	2.984	13.380	10.396	3,100
13	0.000	8.074	8.074	2,300
Sum			69.009	89,100
Estimating the Weighted Averages				
International Highway 59				
Segment		Weight		AADT
1		2.1\%		575
2		2.0\%		467
3		4.9\%		265
4		19.2\%		654
5		6.8\%		184
6		11.0\%		297
7		6.0\%		210
8		12.6\%		366
9		4.2\%		131
10		0.7\%		33
11		3.7\%		143
12		15.1\%		467
13		11.7\%		269
Sum		100.0\%		4,062
Source: Tex	BINS Technical Comm	presentative		

Table 6b
United States 77, Calendar Year 2000 Data

United States 77				
Within 100 km of the US-M exico Border?				Y
Serves an International POE?				Y
Segment \#	Begin Post Mile	End Post Mile	Length Miles	Avg Ann Daily Traffic
1	5.325	6.161	0.836	15,840
2	6.161	8.124	1.963	15,730
3	8.124	9.620	1.496	17,650
4	9.620	10.754	1.134	15,470
5	10.754	11.867	1.113	25,860
6	11.867	12.322	0.455	25,860
7	12.322	13.165	0.843	54,270
8	13.165	13.964	0.799	53,860
9	13.964	15.402	1.438	60,460
10	15.402	17.558	2.156	43,570
11	17.558	19.060	1.502	49,380
12	19.060	19.560	0.500	40,220
13	19.560	21.543	1.983	41,010
14	21.543	23.908	2.365	41,050
15	23.908	26.848	2.940	33,160
16	26.848	28.520	1.672	34,440
17	28.520	31.651	3.131	34,840
18	31.629	32.227	0.598	34,840
19	32.227	33.879	1.652	44,420
20	0.000	0.060	0.060	19,300
21	33.879	34.409	0.530	44,420
22	34.409	35.474	1.065	29,620
23	35.474	36.551	1.077	35,230
24	36.551	37.128	0.577	41,480
25	37.128	37.876	0.748	27,440
26	0.000	0.921	0.921	14,790
27	0.921	4.325	3.404	15,840
28	5.021	5.925	0.904	19,300
29	9.999	14.965	4.966	9,900
30	14.965	16.539	1.574	9,700
31	16.539	18.045	1.506	10,000
32	18.045	20.209	2.164	9,070
33	20.209	23.252	3.043	15,700
34	23.252	26.844	3.592	15,600
35	26.844	28.275	1.431	15,780
36	0.011	9.722	9.711	9,400
37	9.722	12.988	3.266	9,400
		Sum	69.115	1,033,900


Estimating the Weighted Averages		
United States 77		
Segment	Weight	AADT
1	1.2\%	192
2	2.8\%	447
3	2.2\%	382
4	1.6\%	254
5	1.6\%	416
6	0.7\%	170
7	1.2\%	662
8	1.2\%	623
9	2.1\%	1,258
10	3.1\%	1,359
11	2.2\%	1,073
12	0.7\%	291
13	2.9\%	1,177
14	3.4\%	1,405
15	4.3\%	1,411
16	2.4\%	833
17	4.5\%	1,578
18	0.9\%	301
19	2.4\%	1,062
20	0.1\%	17
21	0.8\%	341
22	1.5\%	456
23	1.6\%	549
24	0.8\%	346
25	1.1\%	297
26	1.3\%	197
27	4.9\%	780
28	1.3\%	252
29	7.2\%	711
30	2.3\%	221
31	2.2\%	218
32	3.1\%	284
33	4.4\%	691
34	5.2\%	811
35	2.1\%	327
36	14.1\%	1,321
37	4.7\%	444
Sum	100.0\%	23,157
Source: Texas BINSTechnical Committee representative		

Table 6c
United States 281, Calendar Year 2000 Data

United States 281				
Within 100 km of the US-M exico Border?				Y
Serves an International POE?				Y
Segment \#	Begin Post Mile	End Post Mile	Length Miles	Avg Ann Daily Traffic
1	5.000	5.738	0.738	35,000
2	3.385	3.966	0.581	15,000
3	3.966	4.432	0.466	8,600
4	1.497	3.385	1.888	18,300
5	0.213	1.497	1.284	13,000
6	46.341	48.342	2.001	10,100
7	45.843	46.341	0.498	18,500
8	43.843	45.843	2.000	16,600
9	42.845	43.843	0.998	19,600
10	41.355	42.845	1.490	21,000
11	6.585	7.584	0.999	84,000
12	4.945	6.585	1.640	67,000
13	3.946	4.945	0.999	43,000
14	2.788	3.946	1.158	45,000
15	1.000	2.780	1.780	38,000
16	33.366	33.849	0.483	28,000
17	32.326	33.366	1.040	27,000
18	31.329	32.326	0.997	28,000
19	30.620	31.329	0.709	20,000
20	29.216	30.620	1.404	28,000
21	27.839	29.216	1.377	24,000
22	23.261	25.654	2.393	18,000
23	15.837	23.261	7.424	15,000
24	15.561	15.837	0.276	11,000
25	3.700	14.600	10.900	9,900
26	3.162	10.998	7.836	9,900
27	1.413	3.162	1.749	10,500
28	0.000	1.413	1.413	10,600
29	31.316	32.721	1.405	10,200
30	26.177	31.316	5.139	10,900
31	2.985	4.084	1.099	14,600
32	2.512	2.985	0.473	16,100
33	2.497	3.011	0.514	13,500
34	0.500	2.497	1.997	11,400
		Sum	67.148	769,300


Estimating the Weighted Averages		
United States 281		
Segment	Weight	AADT
1	1.1\%	385
2	0.9\%	130
3	0.7\%	60
Segment	Weight	AADT
4	2.8\%	515
5	1.9\%	249
6	3.0\%	301
7	0.7\%	137
8	3.0\%	494
9	1.5\%	291
10	2.2\%	466
11	1.5\%	1,250
12	2.4\%	1,636
13	1.5\%	640
14	1.7\%	776
15	2.7\%	1,007
16	0.7\%	201
17	1.5\%	418
18	1.5\%	416
19	1.1\%	211
20	2.1\%	585
21	2.1\%	492
22	3.6\%	641
23	11.1\%	1,658
24	0.4\%	45
25	16.2\%	1,607
26	11.7\%	1,155
27	2.6\%	273
28	2.1\%	223
29	2.1\%	213
30	7.7\%	834
31	1.6\%	239
32	0.7\%	113
33	0.8\%	103
34	3.0\%	339
Sum	100.0\%	18,107
Source: Texas BINSTechnical Committee representative		

Table 6d
State 359, Calendar Year 2000 Data

State 359				
Within 100 km of the US-M exico Border?				Y
Serves an International POE?				
Segment \#	Begin Post Mile	End Post Mile	Length Miles	Avg Ann Daily   Traffic
1	2.219	2.741	0.522	12,300
2	2.741	3.938	1.197	8,300
3	3.938	5.230	1.292	13,200
4	5.230	6.925	1.695	11,500
5	6.925	12.699	5.774	7,700
6	12.699	16.105	3.406	7,700
7	16.105	21.436	5.331	5,200
8	21.436	25.304	3.868	2,700
9	25.304	26.819	1.515	2,700
10	26.819	32.149	5.330	2,600
11	32.149	33.512	1.363	2,000
12	33.512	33.598	0.086	2,000
13	33.598	33.820	0.222	2,100
14	33.820	42.563	8.743	2,200
15	42.563	42.740	0.177	2,100
16	42.740	46.041	3.301	2,100
17	0.000	3.974	3.974	2,100
18	0.000	3.588	3.588	2,100
19	3.588	4.587	0.999	2,300
20	4.587	5.134	0.547	5,500
21	5.134	5.481	0.347	6,000
22	5.892	6.105	0.213	3,700
23	6.105	6.318	0.213	2,400
24	6.318	6.736	0.418	2,200
25	6.736	10.183	3.447	1,750
				547
				114,450


Estimating the Weighted Averages		
State 359		
Segment	Weight	AADT
1	0.9\%	112
2	2.1\%	173
3	2.2\%	296
4	2.9\%	339
5	10.0\%	772
6	5.9\%	456
7	9.3\%	482
8	6.7\%	181
9	2.6\%	71
10	9.3\%	241
11	2.4\%	47
12	0.1\%	3
Segment	Weight	AADT
13	0.4\%	8
14	15.2\%	334
15	0.3\%	6
16	5.7\%	120
17	6.9\%	145
18	6.2\%	131
19	1.7\%	40
20	1.0\%	52
21	0.6\%	36
22	0.4\%	14
23	0.4\%	9
24	0.7\%	16
25	6.0\%	105
Sum	100.0\%	4,189
Texas BINST	sentative	

## THE IH-69 CORRIDOR: CALENDAR YEAR 2020 DATA

Table 7a
International Highway 59, Calendar Year 2020 Data

International Highway 59				
Within 100 km of the US-M exico Border?				Y
Serves an International POE?				Y
$\begin{gathered} \text { Segment } \\ \# \end{gathered}$	Begin Post Mile	End Post Mile	Length Miles	Avg Ann Daily Traffic
1	46.140	47.558	1.418	39,200
2	44.740	46.140	1.400	50,970
3	41.351	44.740	3.389	8,420
4	28.069	41.351	13.282	5,300
5	23.364	28.069	4.705	4,210
6	15.767	23.364	7.597	4,210
7	11.627	15.767	4.140	5,460
8	2.920	11.627	8.707	4,520
9	0.003	2.920	2.917	4,340
10	0.000	0.453	0.453	7,140
11	0.453	2.984	2.531	6,080
12	2.984	13.380	10.396	4,840
13	0.000	8.074	8.074	3,700
Sum			69.009	148,390
Estimating the Weighted Averages				
International Highway 59				
Segment		Weight		AADT
1		2.1\%		805
2		2.0\%		1,034
3		4.9\%		414
4		19.2\%		1,020
5		6.8\%		287
6		11.0\%		463
7		6.0\%		328
8		12.6\%		570
9		4.2\%		183
10		0.7\%		47
11		3.7\%		223
12		15.1\%		729
13		11.7\%		433
Sum		100.0\%		6,537
Source: Texas BINS Technical Committee representative				

Table 7b
United States 77, Calendar Year 2000 Data

United States 77				
Within 100 km of the US-M exico Border?				Y
Serves an International POE?				Y
Segment \#	Begin Post Mile	End Post Mile	Length Miles	Avg Ann Daily Traffic
1	5.325	6.161	0.836	27,990
2	6.161	8.124	1.963	27,360
3	8.124	9.620	1.496	31,250
4	9.620	10.754	1.134	24,130
5	10.754	11.867	1.113	36,200
6	11.867	12.322	0.455	36,200
7	12.322	13.165	0.843	75,980
8	13.165	13.964	0.799	84,020
9	13.964	15.402	1.438	88,160
10	15.402	17.558	2.156	67,970
11	17.558	19.060	1.502	70,360
12	19.060	19.560	0.500	60,770
13	19.560	21.543	1.983	73,020
14	21.543	23.908	2.365	70,420
15	23.908	26.848	2.940	58,200
16	26.848	28.520	1.672	57,290
17	28.520	31.651	3.131	56,660
18	31.629	32.227	0.598	56,660
19	32.227	33.879	1.652	80,080
20	0.000	0.060	0.060	23,240
21	33.879	34.409	0.530	80,080
22	34.409	35.474	1.065	46,210
23	35.474	36.551	1.077	54,960
24	36.551	37.128	0.577	58,070
25	37.128	37.876	0.748	39,170
26	0.000	0.921	0.921	25,330
27	0.921	4.325	3.404	27,990
28	5.021	5.925	0.904	23,240
29	9.999	14.965	4.966	18,210
30	14.965	16.539	1.574	19,030
31	16.539	18.045	1.506	15,600
32	18.045	20.209	2.164	14,150
33	20.209	23.252	3.043	29,470
34	23.252	26.844	3.592	27,740
35	26.844	28.275	1.431	27,850
36	0.011	9.722	9.711	18,940
37	9.722	12.988	3.266	17,920
		Sum	69.115	1,649,920


Estimating the Weighted Averages		
United States 77		
Segment	Weight	AADT
1	1.2\%	339
2	2.8\%	777
3	2.2\%	676
4	1.6\%	396
5	1.6\%	583
6	0.7\%	238
7	1.2\%	927
8	1.2\%	971
9	2.1\%	1,834
10	3.1\%	2,120
11	2.2\%	1,529
12	0.7\%	440
13	2.9\%	2,095
14	3.4\%	2,410
15	4.3\%	2,476
16	2.4\%	1,386
17	4.5\%	2,567
18	0.9\%	490
19	2.4\%	1,914
20	0.1\%	20
21	0.8\%	614
22	1.5\%	712
23	1.6\%	856
24	0.8\%	485
25	1.1\%	424
26	1.3\%	338
27	4.9\%	1,379
28	1.3\%	304
29	7.2\%	1,308
30	2.3\%	433
31	2.2\%	340
32	3.1\%	443
33	4.4\%	1,298
34	5.2\%	1,442
35	2.1\%	577
36	14.1\%	2,661
37	4.7\%	847
Sum	100.0\%	38,648
Texas BINST	sentative	

Table 7c
United States 281, Calendar Year 2020 Data

United States 281				
Within 100 km of the US-M exico Border?				Y
Serves an International POE?				Y
Segment \#	Begin Post Mile	End Post Mile	Length Miles	Avg Ann Daily Traffic
1	5.000	5.738	0.738	54,600
2	3.385	3.966	0.581	23,400
3	3.966	4.432	0.466	13,420
4	1.497	3.385	1.888	41,770
5	0.213	1.497	1.284	30,070
6	46.341	48.342	2.001	26,130
7	45.843	46.341	0.498	39,890
8	43.843	45.843	2.000	34,200
9	42.845	43.843	0.998	41,560
10	41.355	42.845	1.490	36,410
11	6.585	7.584	0.999	81,850
12	4.945	6.585	1.640	95,190
13	3.946	4.945	0.999	94,180
14	2.788	3.946	1.158	86,090
15	1.000	2.780	1.780	23,770
16	33.366	33.849	0.483	51,790
17	32.326	33.366	1.040	55,280
18	31.329	32.326	0.997	54,220
19	30.620	31.329	0.709	28,500
20	29.216	30.620	1.404	53,540
21	27.839	29.216	1.377	46,050
22	23.261	25.654	2.393	28,080
23	15.837	23.261	7.424	29,380
24	15.561	15.837	0.276	20,370
25	3.700	14.600	10.900	18,610
26	3.162	10.998	7.836	18,680
27	1.413	3.162	1.749	19,690
28	0.000	1.413	1.413	26,020
29	31.316	32.721	1.405	23,680
30	26.177	31.316	5.139	20,590
31	2.985	4.084	1.099	20,440
32	2.512	2.985	0.473	22,540
33	2.497	3.011	0.514	18,900
34	0.500	2.497	1.997	17,100
		Sum	67.148	1,295,990


Estimating the Weighted Averages		
United States 281		
Segment	Weight	AADT
1	1.1\%	600
2	0.9\%	202
3	0.7\%	93
Segment	Weight	AADT
4	2.8\%	1,174
5	1.9\%	575
6	3.0\%	779
7	0.7\%	296
8	3.0\%	1,019
9	1.5\%	618
10	2.2\%	808
11	1.5\%	1,218
12	2.4\%	2,325
13	1.5\%	1,401
14	1.7\%	1,485
15	2.7\%	630
16	0.7\%	373
17	1.5\%	856
18	1.5\%	805
19	1.1\%	301
20	2.1\%	1,119
21	2.1\%	944
22	3.6\%	1,001
23	11.1\%	3,248
24	0.4\%	84
25	16.2\%	3,021
26	11.7\%	2,180
27	2.6\%	513
28	2.1\%	548
29	2.1\%	495
30	7.7\%	1,576
31	1.6\%	335
32	0.7\%	159
33	0.8\%	145
34	3.0\%	509
Sum	100.0\%	31,433
Source: Texas BINSTechnical Committee representative		

Table 7d
State 359, Calendar Year 2020 Data

State 359				
Within 100 km of the US-M exico Border?				Y
Serves an International POE?				Y
Segment \#	Begin Post Mile	End Post Mile	Length Miles	Avg Ann Daily Traffic
1	2.219	2.741	0.522	19,190
2	2.741	3.938	1.197	14,940
3	3.938	5.230	1.292	25,440
4	5.230	6.925	1.695	28,540
5	6.925	12.699	5.774	16,520
6	12.699	16.105	3.406	16,520
7	16.105	21.436	5.331	8,910
8	21.436	25.304	3.868	4,210
9	25.304	26.819	1.515	4,210
10	26.819	32.149	5.330	5,460
11	32.149	33.512	1.363	4,020
12	33.512	33.598	0.086	4,020
13	33.598	33.820	0.222	3,660
14	33.820	42.563	8.743	4,040
15	42.563	42.740	0.177	3,520
16	42.740	46.041	3.301	3,380
17	0.000	3.974	3.974	3,620
18	0.000	3.588	3.588	3,620
19	3.588	4.587	0.999	3,450
20	4.587	5.134	0.547	7,700
21	5.134	5.481	0.347	9,240
22	5.892	6.105	0.213	5,180
23	6.105	6.318	0.213	3,360
24	6.318	6.736	0.418	3,680
25	6.736	10.183	3.447	2,750
		Sum	57.568	209,180


Estimating the Weighted Averages		
State 359		
Segment	Weight	AADT
1	0.9\%	174
2	2.1\%	311
3	2.2\%	571
4	2.9\%	840
5	10.0\%	1,657
6	5.9\%	977
7	9.3\%	825
8	6.7\%	283
9	2.6\%	111
10	9.3\%	506
11	2.4\%	95
12	0.1\%	6
Segment	Weight	AADT
13	0.4\%	14
14	15.2\%	614
15	0.3\%	11
16	5.7\%	194
17	6.9\%	250
18	6.2\%	226
19	1.7\%	60
20	1.0\%	73
21	0.6\%	56
22	0.4\%	19
23	0.4\%	12
24	0.7\%	27
25	6.0\%	165
Sum	100.0\%	8,075
Source: Texas BINSTechnical Committee representative		

## THE U.S. 83 CORRIDOR: CALENDAR YEAR 2000 DATA

Table 8a
United States 83, Calendar Year 2000 Data

United States 83									
Within 100 km of the US-M exico Border?					Y				
Serves an International POE?					Y				
Segment \#	$\begin{aligned} & \hline \text { Begin } \\ & \text { Post } \\ & \text { Mile } \end{aligned}$	$\begin{aligned} & \text { End } \\ & \text { Post } \\ & \text { Mile } \end{aligned}$	Length Miles	Avg Ann Daily Traffic	$\begin{gathered} \hline \text { Seg } \\ \# \end{gathered}$	Begin Post Mile	$\begin{aligned} & \text { End } \\ & \text { Post } \\ & \text { Mile } \end{aligned}$	Length Miles	Avg Ann Daily Traffic
1					39	0.000	48.143	48.143	44,230
2					40	9.771	10.244	0.473	27,000
3					41	10.244	12.831	2.587	26,000
4					42	12.831	14.170	1.339	31,000
5					43	14.170	16.026	1.856	43,380
6					44	16.026	17.744	1.718	43,010
7					45	17.744	18.755	1.011	48,670
8					46	18.755	20.253	1.498	61,110
9					47	20.253	21.802	1.549	66,500
10					48	21.802	22.829	1.027	51,110
11					49	22.829	23.780	0.951	50,490
12					50	23.780	25.249	1.469	70,830
13					51	25.249	25.790	0.541	72,250
14					52	25.790	27.455	1.665	68,420
15					53	27.455	28.488	1.033	89,590
16					54	28.488	29.899	1.411	76,940
17					55	20.798	21.110	0.312	5,100
18					56	21.110	27.575	6.465	5,500
19					57	27.575	30.377	2.802	6700
20					58	30.377	31.080	0.703	13,500
21					59	31.080	32.259	1.179	17,400
22					60	32.259	33.470	1.211	10,900
23					61	33.470	36.793	3.323	4,500
24					62	36.793	37.846	1.053	4,400
25					63	37.846	44.432	6.586	4,400
26					64	44.432	48.719	4.287	4,500
27					65	48.719	53.703	4.984	4,500
28	0.000	0.880	0.880	44,230	66	0.000	3.634	3.634	4,600
29	0.880	3.104	2.224	45,220	67	3.634	9.904	6.270	4,500
30	3.104	4.809	1.705	48,490	68	1.071	2.042	0.971	33,000
31	4.809	6.981	2.172	45,910	69	2.042	6.449	4.407	30,000
32	6.981	8.730	1.749	46,250	70	6.449	8.248	1.799	11,200
33	8.730	9.838	1.108	46,250	71	8.248	11.118	2.870	11,300
34	29.899	31.408	1.509	86,470	72	11.118	17.048	5.930	4,600
35	31.408	33.661	2.253	76,750	73	16.479	29.253	12.774	1,950
36	33.661	36.479	2.818	62,610	74	29.253	32.888	3.635	2,700
37	36.479	41.902	5.423	61,540	75	0.000	13.037	13.037	1,900



Table 8b
State Spur-200 / Business-83, Calendar Year 2000 Data

State Spur-200 / Business-83				
Within 100 km of the US-Mexico Border?				Y
Serves an International POE?				Y
$\underset{\#}{\text { Segment }}$	Begin Post Mile	End Post Mile	Length Miles	$\underset{\text { Traffic }}{\text { Avg Ann Daily }}$
1	0.000	0.050	0.050	2,400
2	0.000	0.699	0.699	250
3	0.699	1.057	0.358	450
Sum			1.107	3,100
Estimating the Weighted Averages				
State Spur 200 / Business 83				
Segment		Weight		AADT
1		4.5\%		108
2		63.1\%		158
3		32.3\%		146
Sum		100.0\%		412
Source: Texas BINS Technical Committee representative				

## THE U.S. 83 CORRIDOR: CALENDAR YEAR 2020 DATA

Table 9a

United States 83, Calendar Year 2020 Data

United States 83									
Within 100 km of the US-M exico Border?					Y				
Serves an International POE?					Y				
$\begin{gathered} \hline \text { Seg- } \\ \text { ment } \\ \# \end{gathered}$	Begin Post Mile	$\begin{aligned} & \text { End } \\ & \text { Post } \\ & \text { Mile } \end{aligned}$	Length Miles	Avg Ann Daily Traffic	$\begin{gathered} \hline \text { Seg } \\ \# \end{gathered}$	Begin Post Mile	$\begin{aligned} & \text { End } \\ & \text { Post } \\ & \text { Mile } \end{aligned}$	Length Miles	Avg Ann Daily Traffic
1					39	0.000	48.143	48.143	81,380
2					40	9.771	10.244	0.473	47,090
3					41	10.244	12.831	2.587	48,000
4					42	12.831	14.170	1.339	43,400
5					43	14.170	16.026	1.856	87,950
6					44	16.026	17.744	1.718	76,020
7					45	17.744	18.755	1.011	75,930
8					46	18.755	20.253	1.498	95,330
9					47	20.253	21.802	1.549	108,470
10					48	21.802	22.829	1.027	71,550
11					49	22.829	23.780	0.951	78,760
12					50	23.780	25.249	1.469	110,490
13					51	25.249	25.790	0.541	104,260
14					52	25.790	27.455	1.665	95,790
15					53	27.455	28.488	1.033	136,480
16					54	28.488	29.899	1.411	130,540
17					55	20.798	21.110	0.312	10,160
18					56	21.110	27.575	6.465	10,850
19					57	27.575	30.377	2.802	13730
20					58	30.377	31.080	0.703	25,540
21					59	31.080	32.259	1.179	30,990
22					60	32.259	33.470	1.211	23,100
23					61	33.470	36.793	3.323	8,870
24					62	36.793	37.846	1.053	9,970
25					63	37.846	44.432	6.586	9,970
26					64	44.432	48.719	4.287	9,690
27					65	48.719	53.703	4.984	9,590
28	0.000	0.880	0.880	81,250	66	0.000	3.634	3.634	7,180
29	0.880	3.104	2.224	80,720	67	3.634	9.904	6.270	8,630
30	3.104	4.809	1.705	85,800	68	1.071	2.042	0.971	58,670
31	4.809	6.981	2.172	76,220	69	2.042	6.449	4.407	76,490
32	6.981	8.730	1.749	75,440	70	6.449	8.248	1.799	22,480
33	8.730	9.838	1.108	64,750	71	8.248	11.118	2.870	27,940
34	29.899	31.408	1.509	155,930	72	11.118	17.048	5.930	7,180
35	31.408	33.661	2.253	141,560	73	16.479	29.253	12.774	4,360
36	33.661	36.479	2.818	113,840	74	29.253	32.888	3.635	5,210


37	36.479	41.902	5.423	107,280	75	0.000	13.037	13.037	1,900
38	41.902	47.143	5.241	85,690	76	13.037	16.479	3.442	1,950
							Sum	187.027	2,844,370
Estimating the Weighted Averages									
United States 83									
Segment		Weight		AADT	Segment		Weight		AADT
1						39	25.7\%		20,948
2						40	0.3\%		119
3						41	1.4\%		664
4						42	0.7\%		311
5						43	1.0\%		873
6						44	0.9\%		698
7						45	0.5\%		410
8						46	0.8\%		764
9						47	0.8\%		898
10						48	0.5\%		393
11						49	0.5\%		400
12						50	0.8\%		868
13						51	0.3\%		302
14						52	0.9\%		853
15						53	0.6\%		754
16						54	0.8\%		985
17						55	0.2\%		17
18						56	3.5\%		375
19						57	1.5\%		206
20						58	0.4\%		96
21						59	0.6\%		195
22						60	0.6\%		150
23						61	1.8\%		158
24						62	0.6\%		56
25						63	3.5\%		351
26						64	2.3\%		222
27						65	2.7\%		256
28		0.5\%		382		66	1.9\%		140
29		1.2\%		960		67	3.4\%		289
30		0.9\%		782		68	0.5\%		305
31		1.2\%		885		69	2.4\%		1,802
32		0.9\%		705		70	1.0\%		216
33		0.6\%		384		71	1.5\%		429
34		0.8\%		1,258		72	3.2\%		228
35		1.2\%		1,705		73	6.8\%		298
36		1.5\%		1,715		74	1.9\%		101
37		2.9\%		3,111		75	7.0\%		132
38		2.8\%		2,401		76	1.8\%		36
						Sum	100.0\%		36,297
Source: Texas BINSTechnical Committee representative									

Table 9b
State Spur-200 / Business-83, Calendar Year 2020 Data

State Spur-200 / Business-83				
Within 100 km of the US-Mexico Border?				Y
Serves an International POE?				Y
$\underset{\#}{\text { Segment }}$	Begin Post Mile	End Post Mile	Length Miles	$\underset{\text { Traffic }}{\text { Avg Ann Daily }}$
1	0.000	0.050	0.050	3,740
2	0.000	0.699	0.699	390
3	0.699	1.057	0.358	630
Sum			1.107	4,760
Estimating the Weighted Averages				
State Spur 200 / Business 83				
Segment		Weigh		AADT
1		4.5\%		169
2		63.1\%		246
3		32.3\%		204
Sum		100.0\%		619
Source: Texas BINS Technical Committee representative				

## THE LA ENTRADA AL PACIFICO CORRIDOR

Table 10
United States 67, Calendar Year Data 2000-2020

United States 67					United States 67			
Calendar Year 2000					Calendar Year 2020			
Within 100 km of the US-M exico Border?				Y	Y			
Serves an International POE?				Y	Y			
$\begin{gathered} \text { Seg- } \\ \text { ment } \\ \# \end{gathered}$	Begin Post Mile	$\begin{aligned} & \text { End } \\ & \text { Post } \\ & \text { Mile } \end{aligned}$	Length Miles	Avg Ann Daily Traffic	Begin Post Mile	$\begin{aligned} & \text { End } \\ & \text { Post } \\ & \text { Mile } \end{aligned}$	Length Miles	Avg Ann Daily Traffic
1	14.371	14.871	0.500	3,500	14.371	14.871	0.500	4,900
2	13.465	14.371	0.906	1,450	13.465	14.371	0.906	2,030
3	12.974	13.465	0.491	1,350	12.974	13.465	0.491	1,890
4	11.705	12.974	1.269	1,000	11.705	12.974	1.269	1,400
5	0.000	11.705	11.705	900	0.000	11.705	11.705	1,700
6	16.151	33.265	17.114	890	16.151	33.265	17.114	1,700
7	1.126	7.842	6.716	1,100	1.126	7.842	6.716	1,540
8	1.000	1.126	0.126	2,400	1.000	1.126	0.126	3,620
9	53.830	54.102	0.272	4,200	53.830	54.102	0.272	6,800
10	52.700	53.830	1.130	2,300	52.700	53.830	1.130	4,300
11	40.005	52.700	12.695	2,100	40.005	52.700	12.695	3,700
12	29.811	37.202	7.391	2,100	29.811	37.202	7.391	3,700
13	27.925	28.834	0.909	13,600	27.925	28.834	0.909	22,220
14	28.834	29.811	0.977	5,800	28.834	29.811	0.977	10,850
15	19.676	25.178	5.502	2,500	19.676	25.178	5.502	4,320
16	25.178	27.238	2.060	9,600	25.178	27.238	2.060	14,960
17	27.238	27.507	0.269	11,800	27.238	27.507	0.269	16,520
18	0.000	3.091	3.091	1,100	0.000	3.091	3.091	2,140
19	3.091	19.676	16.585	1,100	3.091	19.676	16.585	2,060
20	1.000	11.970	10.970	1,100	1.000	11.970	10.970	1,540
			100.678	69,890		Sum	100.678	111,890
Estimating the Weighted Averages								
United States 67				United States 67				
Year 2000				Year 2020				
Segment		Weight	AADT	Segment		eight	AADT	
1		0.5\%	17	1		0.5\%	24	
2		0.9\%	13	2		0.9\%	18	
3		0.5\%	7	3		0.5\%	9	
4		1.3\%	13	4		1.3\%	18	
		11.6\%	105	5		1.6\%	198	
6		17.0\%	151	6		17.0\%	289	
7		6.7\%	73	7		.7\%	103	
		0.1\%	3	8		0.1\%	5	


9	0.3\%	11	9	0.3\%	18
Segment	Weight	AADT	Segment	Weight	AADT
10	1.1\%	26	10	1.1\%	48
11	12.6\%	265	11	12.6\%	467
12	7.3\%	154	12	7.3\%	272
13	0.9\%	123	13	0.9\%	201
14	1.0\%	56	14	1.0\%	105
15	5.5\%	137	15	5.5\%	236
16	2.0\%	196	16	2.0\%	306
17	0.3\%	32	17	0.3\%	44
18	3.1\%	34	18	3.1\%	66
19	16.5\%	181	19	16.5\%	339
20	10.9\%	120	20	10.9\%	168
Sum	100.0\%	1,717	Sum	100.0\%	2,933
e: Texas BINSTechnical Committee representative					

## THE PORTS TO PLAINS CORRIDOR: CALENDAR YEAR 2000 DATA

Table 11a
United States 57

United States 57				
Within 100 km of the US-M exico Border?				Y
Serves an International POE?				Y
$\begin{gathered} \text { Segment } \\ \# \end{gathered}$	Begin Post Mile	End Post Mile	Length Miles	Avg Ann Daily Traffic
1	0.000	11.800	11.800	6,700
2	11.800	14.695	2.895	2,900
3	0.500	0.881	0.381	10,400
4	0.881	1.382	0.501	12,700
5	1.382	2.019	0.637	13,800
6	2.019	2.432	0.413	19,400
7	2.432	3.123	0.691	16,400
8	7.691	16.075	8.384	2,700
9	0.000	0.428	0.428	4,100
10	0.428	0.918	0.490	3,500
11	0.918	5.516	4.598	2,900
12	5.516	14.659	9.143	2,700
13	14.379	14.661	0.282	3,600
14	14.661	15.330	0.669	3,100
15	15.330	27.497	12.167	2,900
16	0.000	11.069	11.069	2,900
17	11.069	21.356	10.287	3,100
18	21.356	24.220	2.864	2,900
			77.699	116,700
Estimating the Weighted Averages				
United States 57				
Segment		Weight		AADT
1		15.2\%		1,018
2		3.7\%		108
3		0.5\%		51
4		0.6\%		82
5		0.8\%		113
6		0.5\%		103
7		0.9\%		146
8		10.8\%		291
9		0.6\%		23
10		0.6\%		22
11		5.9\%		172
12		11.8\%		318
13		0.4\%		13
14		0.9\%		27
15		15.7\%		454


Segment	Weight	AADT
16	$14.2 \%$	413
17	$13.2 \%$	410
18	$3.7 \%$	107
Sum	$100.0 \%$	3,870
Source: Texas BINSTechnical Committee representative		

Table 11b
United States 277

United States 277				
Within 100 km of the US-M exico Border?				Y
Serves an International POE?				Y
$\underset{\#}{\text { Segment }}$	Begin Post Mile	End Post Mile	Length Miles	Avg Ann Daily Traffic
1	5.000	5.862	0.862	10,000
2	13.000	13.379	0.379	7,400
3	13.379	13.777	0.398	6,700
4	0.500	0.680	0.180	12,200
5	0.680	1.249	0.569	5,800
6	1.249	1.561	0.312	6,700
7	1.561	2.222	0.661	5,500
8	0.000	0.097	0.097	13,800
9	0.097	0.185	0.088	16,600
10	0.000	16.910	16.910	1,000
11	36.626	39.290	2.664	1,050
12	42.185	43.600	1.415	1,250
13	43.600	52.496	8.896	1,550
14	1.502	1.909	0.407	5,300
15	1.909	3.001	1.092	3,900
16	3.001	6.188	3.187	3,700
17	6.188	12.679	6.491	2,700
18	1.000	1.228	0.228	1,400
19	1.228	14.570	13.342	1,050
			58.178	107,600
Estimating the Weighted Averages				
United States 277				
Segment		Weight		AADT
1		1.5\%		148
2		0.7\%		48
3		0.7\%		46
4		0.3\%		38
5		1.0\%		57
6		0.5\%		36
7		1.1\%		62
8		0.2\%		23
9		0.2\%		25
10		29.1\%		291
11		4.6\%		48
12		2.4\%		30
13		15.3\%		237
14		0.7\%		37
15		1.9\%		73
16		5.5\%		203


17	$11.2 \%$	301
Segment	Weight	AADT
18	$0.4 \%$	5
19	$22.9 \%$	241
Sum	$100.0 \%$	1,950
Source: Texas BINSTechnical Committee representative		

Table 11c
United States 83

United States 83				
Within 100 km of the US-M exico Border?				Y
Serves an International POE?				Y
Segment \#	Begin Post Mile	End Post Mile	Length Miles	Avg Ann Daily Traffic
1	1.000	1.758	0.758	13,500
2	1.758	2.479	0.721	17,400
3	2.479	5.735	3.256	17,800
4	5.735	7.170	1.435	18,300
5	7.170	7.599	0.429	18,600
6	7.599	8.502	0.903	25,000
7	8.502	10.016	1.514	28,000
8	10.016	10.024	0.008	27,000
9	29.146	29.376	0.230	21,000
10	29.376	29.718	0.342	25,000
11	29.718	30.221	0.503	26,000
12	30.221	30.384	0.163	28,000
13	30.384	30.517	0.133	29,000
14	30.517	31.293	0.776	27,000
15	31.293	33.187	1.894	28,000
16	33.187	35.307	2.120	17,200
17	35.307	38.698	3.391	14,300
18	38.698	42.326	3.628	13,500
19	42.326	44.580	2.254	13,400
20	44.580	46.747	2.167	13,500
21	0.142	2.583	2.441	4,100
22	2.583	6.446	3.863	3,600
23	6.446	15.275	8.829	5,200
24	15.275	16.115	0.840	10,900
25	37.846	44.432	6.586	4,400
26	44.432	48.719	4.287	4,500
27	48.719	53.703	4.984	4,500
		Sum	58.455	458,700
Estimating the Weighted Averages				
United States 83				
Segment		Weight		AADT
1		1.3\%		175
2		1.2\%		215
		5.6\%		991
		2.5\%		449
4		0.7\%		137


Segment	Weight	AADT
6	1.5\%	386
7	2.6\%	725
8	0.0\%	4
9	0.4\%	83
10	0.6\%	146
11	0.9\%	224
12	0.3\%	78
13	0.2\%	66
14	1.3\%	358
15	3.2\%	907
16	3.6\%	624
17	5.8\%	830
18	6.2\%	838
19	3.9\%	517
20	3.7\%	500
21	4.2\%	171
22	6.6\%	238
23	15.1\%	785
24	1.4\%	157
25	11.3\%	496
26	7.3\%	330
27	8.5\%	384
Sum	100.0\%	10,813
Source: Texas BINSTechnical Committee representative		

## THE PORTS TO PLAINS CORRIDOR: CALENDAR YEAR 2020 DATA

Table 12a
United States 57

United States 57				
Within 100 km of the US-M exico Border?				Y
Serves an International POE?				Y
$\begin{gathered} \text { Segment } \\ \# \end{gathered}$	Begin Post Mile	End Post Mile	Length Miles	Avg Ann Daily Traffic
1	0.000	11.800	11.800	9,380
2	11.800	14.695	2.895	5,700
3	0.500	0.881	0.381	14,560
4	0.881	1.382	0.501	24,910
5	1.382	2.019	0.637	20,690
6	2.019	2.432	0.413	35,450
7	2.432	3.123	0.691	36,400
8	7.691	16.075	8.384	4,690
9	0.000	0.428	0.428	5,740
10	0.428	0.918	0.490	4,900
11	0.918	5.516	4.598	5,180
12	5.516	14.659	9.143	4,390
13	14.379	14.661	0.282	5,040
14	14.661	15.330	0.669	5,230
15	15.330	27.497	12.167	4,480
16	0.000	11.069	11.069	4,610
17	11.069	21.356	10.287	4,800
18	21.356	24.220	2.864	4,590
Sum			77.699	200,740
Estimating the Weighted Averages				
United States 57				
Segment		Weight		AADT
1		15.2\%		1,425
2		3.7\%		212
3		0.5\%		71
4		0.6\%		161
5		0.8\%		170
6		0.5\%		188
7		0.9\%		324
8		10.8\%		506
9		0.6\%		32
10		0.6\%		31
11		5.9\%		307
12		11.8\%		517
13		0.4\%		18
14		0.9\%		45
15		15.7\%		702


Segment	Weight	AADT
16	$14.2 \%$	657
17	$13.2 \%$	635
18	$3.7 \%$	169
Sum	$100.0 \%$	6,169
Source: Texas BINSTechnical Committee representative		

Table 12b
United States 277

United States 277				
Within 100 km of the US-M exico Border?				Y
Serves an International POE?				Y
$\underset{\#}{\text { Segment }}$	Begin Post Mile	End Post Mile	Length Miles	Avg Ann Daily Traffic
1	5.000	5.862	0.862	14,000
2	13.000	13.379	0.379	10,360
3	13.379	13.777	0.398	9,380
4	0.500	0.680	0.180	17,080
5	0.680	1.249	0.569	8,120
6	1.249	1.561	0.312	9,380
7	1.561	2.222	0.661	7,700
8	0.000	0.097	0.097	21,660
9	0.097	0.185	0.088	25,740
10	0.000	16.910	16.910	1,400
11	36.626	39.290	2.664	1,470
12	42.185	43.600	1.415	1,750
13	43.600	52.496	8.896	2,540
14	1.502	1.909	0.407	7,420
15	1.909	3.001	1.092	8,030
16	3.001	6.188	3.187	8,360
17	6.188	12.679	6.491	5,720
18	1.000	1.228	0.228	1,960
19	1.228	14.570	13.342	1,470
			58.178	163,540
Estimating the Weighted Averages				
United States 277				
Segment		Weight		AADT
,		1.5\%		207
2		0.7\%		67
3		0.7\%		64
4		0.3\%		53
5		1.0\%		79
6		0.5\%		50
7		1.1\%		87
8		0.2\%		36
9		0.2\%		39
10		29.1\%		407
11		4.6\%		67


Segment	Weight	AADT
12	$2.4 \%$	43
13	$15.3 \%$	388
14	$0.7 \%$	52
15	$1.9 \%$	151
16	$5.5 \%$	458
17	$11.2 \%$	638
18	$0.4 \%$	8
19	$22.9 \%$	337
Sum	$100.0 \%$	3,233
Source: Texas BINSTechnical Committee representative		

Table 12c
United States 83

United States 83				
Within 100 km of the US-M exico Border?				Y
Serves an International POE?				Y
Segment \#	Begin Post Mile	End Post Mile	Length Miles	Avg Ann Daily Traffic
1	1.000	1.758	0.758	26,410
2	1.758	2.479	0.721	30,380
3	2.479	5.735	3.256	29,170
4	5.735	7.170	1.435	29,380
5	7.170	7.599	0.429	34,990
6	7.599	8.502	0.903	45,230
7	8.502	10.016	1.514	56,020
8	10.016	10.024	0.008	47,090
9	29.146	29.376	0.230	33,770
10	29.376	29.718	0.342	39,000
11	29.718	30.221	0.503	40,560
12	30.221	30.384	0.163	46,940
13	30.384	30.517	0.133	49,830
14	30.517	31.293	0.776	53,600
15	31.293	33.187	1.894	62,790
16	33.187	35.307	2.120	37,720
17	35.307	38.698	3.391	29,390
18	38.698	42.326	3.628	27,540
19	42.326	44.580	2.254	27,780
20	44.580	46.747	2.167	27,060
21	0.142	2.583	2.441	8,460
22	2.583	6.446	3.863	7,360
23	6.446	15.275	8.829	10,220
24	15.275	16.115	0.840	22,600
25	37.846	44.432	6.586	9,970
26	44.432	48.719	4.287	9,690
27	48.719	53.703	4.984	9,590
		Su	58.455	852,540


Estimating the Weighted Averages		
United States 83		
Segment	Weight	AADT
1	1.3\%	342
2	1.2\%	375
3	5.6\%	1,625
4	2.5\%	721
5	0.7\%	257
Segment	Weight	AADT
6	1.5\%	699
7	2.6\%	1,451
8	0.0\%	6
9	0.4\%	133
10	0.6\%	228
11	0.9\%	349
12	0.3\%	131
13	0.2\%	113
14	1.3\%	712
15	3.2\%	2,034
16	3.6\%	1,368
17	5.8\%	1,705
18	6.2\%	1,709
19	3.9\%	1,071
20	3.7\%	1,003
21	4.2\%	353
22	6.6\%	486
23	15.1\%	1,544
24	1.4\%	325
25	11.3\%	1,123
26	7.3\%	711
27	8.5\%	818
Sum	100.0\%	21,393
Texas BINST	sentative	

APPENDIX 9: TRANSPORTATION PROJ ECTS DATA

ARIZONA TRANSPORTATION PROJECTS

Table 1
Arizona Transportation Project Data

Bi-National Border Transportation Infrastructure Needs Assessment Study [BINS]

RECid	State	RTE	BMP	EMP	CO	$\begin{aligned} & \text { Project } \\ & \text { Mode } \\ & \text { 1=Hwy } \\ & \text { 2=Air } \\ & \text { 3=Rail } \\ & \text { 4=Water } \end{aligned}$	LOCATION	TOW	Year Begin	$\begin{aligned} & \hline \text { Year } \\ & \text { End } \end{aligned}$	$\begin{gathered} \text { COST } \\ 2001 \$ \end{gathered}$	COG	CATEGORY	$\begin{gathered} \text { TPG } \\ \text { PROJ ECT } \\ \text { STATUS } \end{gathered}$	Fully Fund -ed?	$\begin{gathered} \text { COST } \\ 2003 \$ \end{gathered}$
Arizona State Transportation Improvement Plan [STIP]																
	AZ				MO	1	I-19	Bridge Rehabilitation			\$1,300				Y	\$1,385
	AZ				PM	1	I-19	Corridor Study			\$2,572				Y	\$2,739
3135	AZ	19	32.9	33	PM	1	CANOA RANCH REST AREA	Construct Sewer System.	1999		\$440	PAG	Roadside Improvements	Archived	Y	\$469
8773	AZ	19	32.9	33	PM	1	$\begin{gathered} \text { CANOA } \\ \text { RANCH REST } \\ \text { AREA } \\ \hline \end{gathered}$	Reconstruct	2000		\$6,400	PAG	Roadside Improvements	Archived	Y	\$6,816
8697	AZ	19	45	47	PM	1	I 19, CALL BOXES	Install ADA call box equipment	1999		\$115	PAG	Roadside Improvements	Archived	Y	\$122
10843	AZ	19	47	63.09	PM	1	$\begin{gathered} \text { MP } 47 \text { TO MP } \\ 63.09 \end{gathered}$	Construct longitudinal rumble strip	2002		\$50	PAG	Safety	9) Currently Programme d (Advertised)	Y	\$53
7797	AZ	19	50	56.8	PM	1	$\begin{aligned} & \hline \text { PIMA MINE } \\ & \text { ROAD- } \\ & \text { VALENCIA } \\ & \text { ROAD } \\ & \hline \end{aligned}$	Remove \& replace travel \& passing lanes, ARAC + ARFC.	2000		\$5,270	PAG	Pavement Preservation	Archived	Y	\$5,613
10687	AZ	19	54.78		PM	1	$\begin{gathered} \hline \text { I-19 @ MP } \\ 54.78 \end{gathered}$	Environmental	2001		\$40	PAG	District Minor	Archived	Y	\$43
10689	AZ	19	54.78		PM	1	$\begin{gathered} \hline 1-19 @ M P \\ 54.78 \\ \hline \end{gathered}$	Design	2001		\$140	PAG	Major	Archived	Y	\$149
1603	AZ	19	58.8	58.9	PM	1	VALENCIA TI	Reconstruct TI	1999		\$19,500	PAG	Major	Archived	Y	\$20,768
8718	AZ	19	59	59.1	PM	1	VALENCIA TI	Utility relocation.	1999		\$250	PAG	Minor	Archived	Y	\$266
1242	AZ	19	59.2	59.2	PM	1	VALENCIA TI	R/W Acquisition.	1999		\$300	PAG	Major	Archived	Y	\$320
4029	AZ	19	59.3	59.3	PM	1	VALENCIA TI	Design (Landscape).	1999		\$50	PAG	Roadside Improvements	Archived	Y	\$53


Arizona State Department of Transportation [ADOT] Database																
RECid	State	RTE	BMP	EMP	CO	$\begin{gathered} \text { Project } \\ \text { Mode } \\ \text { 1=Hwy } \\ 2=\text { Air } \\ 3=\text { Rail } \\ \text { 4=Water } \end{gathered}$	LOCATION	TOW	$\begin{aligned} & \text { Year } \\ & \text { Begin } \end{aligned}$	$\begin{aligned} & \hline \text { Year } \\ & \text { End } \end{aligned}$	$\begin{gathered} \text { COST } \\ 2001 \$ \end{gathered}$	COG	CATEGORY	$\begin{aligned} & \text { TPG PROJ ECT } \\ & \text { STATUS } \end{aligned}$	Fully Funded?	$\begin{gathered} \text { COST } \\ 2003 \$ \end{gathered}$
	AZ	19	0	11644	SC	1	INTERNATIONAL BORDER-SANTA CRUZ PIMA CO LINE	DCR (CanaMex Corridor). Include frontage road to Rio Rico TI.					Corridor Study	4.2) Submitted to TPG For Review	$N$	
	AZ	19	5	7590	SC	1	COUNTRY CLUB - RUBY	$\begin{gathered} \text { W. } \\ \text { FRONTAGE } \\ \text { ROAD } \end{gathered}$					Major	6) Scoping Started	N	
	AZ	19	10.9	8217	SC	1	$\begin{aligned} & \hline \text { RIO RICO TI-RUBY } \\ & \text { RD TI (EAST } \\ & \text { FRONTAGE RD) } \\ & \hline \end{aligned}$	Operationa I Study.					Major	7)   Programming   Pool	N	
	AZ	19	5.97	10777	SC	1	SB FR, MP 5.8 - MP 6.1	Flatten fill slopes and install catch basins and extend cmps as needed. Rebuild barb wire fence as needed for constructio n work.					District Minor	7) Programming Pool	$N$	
	AZ	19	4.5	10404	SC	1	COUNTRY CLUB RD TO RUBY ROAD (JCT 289)	$\begin{gathered} \text { Reconstruct } \\ \text { SB } \\ \text { Frontage } \\ \text { Rd } \\ \hline \end{gathered}$					Major	7.1) District Pool	$N$	
	AZ	19	7.7	7766	SC	1	PENA BLANCA (RUBY ROAD) TI	Reconstruct   Traffic Interchang   e					Major	7.1) District Pool	$N$	
	AZ	19	2.9	10916	SC	1	MARIPOSA RD TO JCT I-19	RR 3" + ARFC					Pavement Preservation	TPG (Holding Status)	N	
	AZ	19	0	11363	SC	1	INTERNATIONAL BORDER TO JCT B-19	$\begin{gathered} \text { RR (4" TL, } \\ \text { 2" PL) \& }^{\prime \prime} \\ \text { AC \& } 1 / 2^{\prime \prime} \\ \text { ARFC } \\ \hline \end{gathered}$					Pavement Preservation	TPG (Holding Status)	$N$	
Arizona	data	pro	d in 2	dollars.	ese	updated to	03 dollars using a 3.2\%	anual growth	e obtai	by th	NS Techn	Com	e representative.			

## BAJA CALIFORNIA TRANSPORTATION PROJECTS

Table 2
Baja California Transportation Projects

Estudio de Necesidades de Infraestructura de Transporte Fronterizo [BINS]								
Proyectos tienen que estar dentro de los 100 Km . de la frontera M éxico-US								
\# 1	\#2	\#3	\#4	\#5				\#6
Nombre e ID del Proyecto	Estado ID	Municipio Donde el Proyecto Está Ubicado	Tipo de Proyecto 1=carreteras 2=aeropuerto 3र्ferrocarril 4=Puerto	Descripción del Proyecto	Año de Inicio	Año para Terminacion	Costo del Proyecto en Pesos Constantes	Completamente   Financiados?
Libramiento Mexicali Ej. Cuernavaca - La Rosita	BC	MEXICALI	1	Proyecto ejecutivo terminado, propuesto a iniciar obra antes del 2004		2004	1,300,000,000	N
Paso a Desnivel Anahuac- Rio Nuevo	BC	MEXICALI	1	En proceso proyecto estructural		2004	60,000,000	Y
Paso a Desnivel Lázaro Cárdenas	BC	MEXICALI	1	En proceso proyecto estructural		2005	70,000,000	Y
Calle México y liga Blvd. Morelos	BC	TECATE	1	Obra terminada en ler etapa		2004	15,000,000	Y
Enlace vial dela autopista MexicaliTijuana con carretera TecateEnsenada	BC	TECATE	1	Nodo Esperanza III. Obra inicida con 65\% de avance		2004	6,000,000	Y
Mejoramiento carretara libre Tecate-Mexicali	BC	TECATE	1	Primera etapa de 3 km . terminada. Segunda etapa en licitactión.		2005	9,000,000	Y
Blvd. Universidad	BC	TECATE	1	1 km del nodo Esperanza III a acceso a Sanita Anita, proyecto terminado obra en licitación.		2005	6,000,000	Y
Nodo InsurgentesClouthier	BC	TIJUANA	1	Obra terminada y funcionando		2003	20,000,000	Y
Blvd. Casablanca	BC	TIJUANA	1	Obra en proceso		2005	20,000,000	Y
Nodo Gato Bronco Casa Blanca	BC	TIJUANA	1	Proyecto en proceso		2004	60,000,000	Y
Gaza Cañon del Matadero	BC	TIJUANA	1	Obra en proceso por terminarse en este año		2006	5,000,000	Y
Libramiento Ensenada	BC	ENSENADA	1	Anteproyecto terminado, en proceso contrato de fotogrametría		2006	1,500,000,000	N


Nombre e ID del Proyecto	$\begin{gathered} \hline \text { Estado } \\ \text { ID } \end{gathered}$	Municipio Donde el Proyecto Está Ubicado	Tipo de Proyecto 1=carreteras 2=aeropuerto 3-ferrocarril 4=Puerto	Descripción del Proyecto	$\begin{gathered} \text { Año } \\ \text { de } \\ \text { Inicio } \end{gathered}$	Año para Terminacion	Costo del Proyecto en Pesos Constantes	Completamente Financiados?
Blvd. Popotia, Rosarito	BC	ENSENADA	1	Obra en proceso- julio o agosto		2007	70,000,000	Y
Blvd. Costero	BC	ENSENADA	1	Proyecto ejecutivo terminado, propuesto a iniciar obra antes del 2004		2004	90,000,000	Y
Circuito Oriente	BC	ENSENADA	1	Obra en proceso de construción, por terminarse		2006	25,000,000	Y
Lib. Sur	BC	ENSENADA	1	Blvd. Ojos Negros por licitarse la primera etapa de 1 km		2003	8,000,000	Y
Tijuana-Rosarito 2000	BC	TIJUANA	1	42 Km . It is being constructed, needs more money		2005	900,000,000	N

## CALIFORNIA TRANSPORTATION PROJ ECTS

Table 3

## California Transportation Projects

Bi-National Border Transportation Infrastructure Needs Assessment Study [BINS]																	
Projects must be Within 100 km of the US-M exico Border																	
\#1	\#2	\#3	\#4	\#5	\#6	\#7	$<$	_Highway	y Projects	Data \#8	$\Longrightarrow$	\#9	\#10				
\#or ID	$\begin{array}{\|c} \hline \text { State } \\ \text { ID } \end{array}$	CO	$\begin{gathered} \text { Project } \\ \text { Mode } \\ \text { 1=Hw y } \\ \text { 2=Air } \\ \text { 3=Rail } \\ \text { 4=Water } \end{gathered}$	Description of Project	$\begin{aligned} & \hline \text { Year the } \\ & \text { Project } \\ & \text { Begins } \end{aligned}$	Year the Project Becomes Opera tional	$\begin{gathered} \text { High- } \\ \text { way } \\ \text { ID } \end{gathered}$	Specify the mile marker where the segment begins	Specify   the mile   marker   where   the   segment   ends	$\begin{array}{l\|} \hline \text { LOS } \\ \text { before } \end{array}$	$\begin{aligned} & \text { LOS } \\ & \text { after } \end{aligned}$	Cost of Project in Thousands of Dollars Base Year Set by Agency	Fully Fund- ed?	Comments	Cost of Project in Thousands of 2003 Dollars	Partial Funding in 2003 Dollars from Alloca tions	2003 Dollars Needed [cost allocations]
1R	CA	SD	1	Construct 2 new HOV   lanes from SR-905 to   SR-54		2020	I-5	3.100	9.400			\$130,000	N	Projects 1R through 6R	\$130,000	\$1,000	\$129,000
2R	CA	SD	1	Construct 2 new HOV   Ianes from SR-54 to   I-8		2020	I-5	9.400	R20.1			\$900,000	N	obtain	\$900,000	\$2,000	\$898,000
3R	CA	SD	1	Add 2 freeway lanes and 2 HOV lanes from I-8 to I-805		2020	I-5	R20.1	R30.7			\$440,000	N	the first	\$440,000	\$1,000	\$439,000
4R	CA	SD	1	Construct 4 new managed lanes from I-805 to SR-56		2014	I-5	R30.7	R32.9			\$30,000	N	\$7,337 from	\$30,000	\$1,000	\$29,000
5R	CA	SD	1	Add 2 freeway lanes and 4 managed lanes from SR-56 to Leucadia Blvd		2014	I-5	R32.9	R42.7			\$530,000	N	RTIP	\$530,000	\$1,337	\$528,663
6 R	CA	SD	1	Construct 4 new managed lanes from Leucadia Blvd. To Vandegrift Blvd		2030	I-5	R42.7	R56.4			\$370,000	N	Project \#2	\$370,000	\$1,000	\$369,000
7R	CA	SD	1	Construct 2 new HOV lanes from SR-125 to SR-67		2030	I-8	9.600	15.800			\$130,000	N		\$130,000		\$130,000
8R	CA	SD	1	$\begin{array}{\|l\|} \hline \text { Construct } 2 \text { new HOV } \\ \text { lanes from SR-67 to } \end{array}$ 2nd Street		2030	I-8	15.800	R18.7			\$40,000	N		\$40,000		\$40,000
9R	CA	SD	1	$\begin{array}{\|c\|} \hline \text { from SR-94 to SR-163/ } \\ \text { Two new HOV lanes } \\ \hline \end{array}$		2030	I-15	R2. 2	M 12.1			\$200,000	N	Projects 9R	\$200,000	\$60,000	\$140,000
10R	CA	SD	1	Add 2 managed lanes/movable barrier from from SR-163 to SR-56		2010	I-15	M12.1	M 19.4			\$200,000	N	through 12R obtain	\$200,000	\$60,000	\$140,000
11 R	CA	SD	1	Construct 4 new   managed   lanes/movable barrier   from SR-163 SR 56 to   Centre City Pkwy.		2010	I-15	M 12.1	M27.6			\$340,000	Y	$\underset{\text { RTP }}{\$ 243,954} \text { from }$	\$340,000	\$100,000	\$240,000


\#or ID	State ID	CO	$\begin{gathered} \text { Project } \\ \text { Mode } \\ \text { 1=Hw y } \\ \text { 2=Air } \\ \text { 3=Rail } \\ \text { 4=Water } \end{gathered}$	Description of Project	Year the Project Begins	Year the Project Becomes Opera tional		Specify the mile marker where the segment begins	Specify the mile marker where the segment ends	LOS before	$\begin{aligned} & \text { LOS } \\ & \text { after } \end{aligned}$	Cost of Project in Thousands of Dollars Base Year Set by Agency	Fully Funded?	Comments	Cost of Project in Thousands of 2003 Dollars	Partial Funding in 2003 Dollars from Alloca tions	2003 Dollars Needed [cost allocations]
12R	CA	SD	1	Construct 4 new managed lanes from Centre City Pkwy to SR-78		2010	I-15	M 27.6	R31.5			\$120,000	N	$\underset{\& ~ \# 5}{\text { projects \#3, \#4 }}$	\$120,000	\$23,954	\$96,046
13R	CA	SD	1	Construct 2 new HOV lanes from I-805 to I15		2030	SR-52					\$70,000	N		\$70,000		\$70,000
14R	CA	SD	1	Construct 2 new freeway lanes and 2 managed lanes from I-15 to SR-125		2030	SR-52					\$170,000	N		\$170,000		\$170,000
15R	CA	SD	1	from l-5 to SR-94 / Two new HOV lanes		2010	$\begin{aligned} & \hline \text { SR- } \\ & 54 / \\ & \text { SR- } \\ & 125 \\ & \hline \end{aligned}$	L1.50	R14.6			\$120,000	N	From RTIP \#20	\$120,000	\$5,502	\$114,498
16R	CA	SD	1	Construct 2 new freeways lanes and 2 HOV lanes fro I -5 to I 15		2014	SR-56					\$180,000	N		\$180,000		\$180,000
17R	CA	SD	1	Construct 2 new HOV lanes from l-5 to l-15		2030	SR-78					\$500,000	N		\$500,000		\$500,000
18R	CA	SD	1	Construct 2 new HOV lanes from I-5 to I-8		2030	$\begin{aligned} & \text { SR- } \\ & 94 / \\ & \text { SR- } \\ & 125 \\ & \hline \end{aligned}$	1.400	T10.1			\$500,000	N		\$500,000		\$500,000
19R	CA	SD	1	Construct new 4 lane toll road and 2 HOV lanes from Orange County to I-5		2030	$\begin{aligned} & \text { SR- } \\ & 241 \end{aligned}$					\$420,000	N		\$420,000		\$420,000
20R	CA	SD	1	Construct new 4 lane managed lanes from SR-905 to SR-54		2020	1-805	1.800	8.900			\$300,000	N		\$300,000		\$300,000
21R	CA	SD	1	Construct new 4 lane managed lanes from SR-54 to I-8		2020	1-805	8.900	17.600			\$450,000	N		\$450,000		\$450,000
22R	CA	SD	1	Construct new 4 lane managed lanes on Mission Valley Viaduct		2020	I-805	17.000	18.900			\$250,000	N		\$250,000		\$250,000
23R	CA	SD	1	Construct 4 new managed lanes from I-8 to I-5		2020	1-805	17.600	0.500			\$380,000	N		\$380,000		\$380,000
24R	CA	SD	1	$\mathrm{I}-5$ and $\mathrm{I}-805 \mathrm{HOV}$ Connector		2014	I-5	30.400	32.700			\$180,000	N		\$180,000		\$180,000


\#or ID	State ID	CO	Project Mode 1=Hwy $2=\mathrm{Air}$ 3=Rail $4=$ Water	Description of Project	Year the Project Begins	Year the Project Becomes Opera tional		Specify the mile marker where the segment begins	Specify the mile marker where the segment ends	LOS before	$\begin{aligned} & \text { LOS } \\ & \text { after } \end{aligned}$	Cost of Project in Thousands of Dollars Base Year Set by Agency	Fully Funded?	Comments	Cost of Project in Thousands of 2003 Dollars	Partial Funding in 2003 Dollars from Alloca tions	2003 Dollars Needed [cost allocations]
25R	CA	SD	1	I-15 and SR-78 HOV Connector		2030	I-15	31.500	32.900			\$200,000	N		\$200,000		\$200,000
26R	CA	SD	1	I-15 and SR-94 HOV Connector		2030	I-15	1.850	3.370			\$150,000	N		\$150,000		\$150,000
27R	CA	SD	1	$\begin{aligned} & \text { I-805 and SR-52 HOV } \\ & \text { Connector } \end{aligned}$		2030	I-805	22.600	24.400			\$150,000	N		\$150,000		\$150,000
28R	CA	SD	1	Port of Entry - Mexico		2010	$\begin{gathered} \hline \mathrm{I}-5 / \mathrm{I}- \\ 805 \\ \hline \end{gathered}$	R0.0	1.190			\$20,000	N		\$20,000		\$20,000
29R	CA	SD	1	Construct a 4 lane freeway from SR-125 to SR-67		2010	SR-52					\$290,000	Y		\$290,000		\$290,000
30R	CA	SD	1	Construct a 4 lane freeway from Camino Ruiz to Carmel County		2010	SR-56					\$130,000	Y		\$130,000		\$130,000
31R	CA	SD	1	Construct new 4 lane toll road from SR-905 to San Miguel Rd.		2010	$\begin{aligned} & \text { SR- } \\ & 125 \end{aligned}$	L1.50	R14.6			\$400,000	Y	Obtain some funds from	\$400,000	\$350,000	\$50,000
32R	CA	SD	1	Construct new 4 lane freeway from San Miguel Rd. to SR-54		2010	$\begin{aligned} & \text { SR- } \\ & 125 \end{aligned}$	11.200	R14.6			\$140,000	Y	RTIP Project \# 14	\$140,000	\$97,503	\$42,497
37R	CA	SD	1	Construct new 6 lane freeway from l-805 to Mexico		2010	$\begin{aligned} & \text { SR- } \\ & 905 \end{aligned}$	2.800	12.000			\$290,000	N	$\begin{gathered} \text { From RTIP } \\ 15 \& \# 16 \end{gathered}$	\$290,000	\$224,929	\$65,071
38R	CA	SD	1	Construct new 4 lane freeway from SR-905 to Mexico		2010	SR-11	0.000	2.700			\$190,000	N	From RTIP   Project \#23	\$190,000	\$6,736	\$183,264
39R	CA	SD	1	Southbound Truck Route				9.700	12.000			\$16,600	N		\$16,600		\$16,600
40R	CA	SD	1	Northbound Truck Route				12.000	10.600			\$1,000	N		\$1,000		\$1,000
41R	CA	SD	1	Otay Mesa ITS				12.000	12.000			\$6,000	N		\$6,000		\$6,000
42R	CA	SD	1	I-5/Virginia Avenue Realignment			I-5	R0.0	R0.9			\$130,000	N	RTIP \# 18	\$130,000	\$11,200	\$118,800
43R	CA	SD	1	Friendship Plaza				R0.0	R0.9			\$300	Y		\$300		\$300
45R	CA	SD	1	Tecate CVEF				0.600	1.900			\$12,500	N		\$12,500		\$12,500
46R	CA	SD	1	Tecate CA - Tecate B.C. Commercial Road Connection			Tecat e POE					\$2,000	N		\$2,000		\$2,000
47R	CA	SD	1	Add 4 lane freeway from I-805 to SR-56		2010	I-5	R0.9	R32.9			\$190,000	Y		\$190,000		\$190,000


\#or ID	State ID	CO	Project Mode 1=Hwy $2=\mathrm{Air}$ 3=Rail $4=$ Water	Description of Project	Year the Project Begins	Year the Project Becomes Opera tional		Specify the mile marker where the segment begins	Specify the mile marker where the segment ends	LOS before	LOS after	Cost of Project in Thousands of Dollars Base Year Set by Agency	Fully Funded?	Comments	Cost of Project in Thousands of 2003 Dollars	Partial Funding in 2003 Dollars from Alloca tions	2003 Dollars Needed [cost allocations]
48R	CA	SD	1	Add 2 lane freeway from 2nd Street to Los Coches		2030	I-8	15.800	R25.7			\$30,000	N		\$30,000		\$30,000
49R	CA	SD	1	Add 2 lane freeway from I-5 to l-805		2030	SR-52					\$80,000	N		\$80,000		\$80,000
50R	CA	SD	1	Add 2 lane freeway form SR-125 to Avocado Rd.		2030	SR-94	T10.1	R13.3			\$70,000	N		\$70,000		\$70,000
51R	CA	SD	1	Add 2 lane conventional highway from Avocado Rd. to Steele Canyon Rd.		2030	SR-94	R13.3	19.800			\$20,000	N		\$20,000		\$20,000
52R	CA	SD	1	Add 4 lane toll road from SR-905 to San Miguel Rd.		2030	$\begin{aligned} & \text { SR- } \\ & 125 \end{aligned}$	L1.50	11.700			\$110,000	Y		\$110,000		\$110,000
53R	CA	SD	1	Add 4 lane freeway from San Miguel Rd. to SR-54		2030	$\begin{aligned} & \text { SR- } \\ & 125 \end{aligned}$	11.700	R14.6			\$60,000	Y		\$60,000		\$60,000
54R	CA	SD	1	I-5 and I-8 freeway connector		2030	I-5	19.030	20.880			\$200,000	N		\$200,000		\$200,000
55R	CA	SD	1	I-5 and SR-56 freeway connector		2010	I-5	30.700	34.130			\$140,000	N	RTIP \# 43	\$140,000	\$3,750	\$136,250
56R	CA	SD	1	I-5 and SR-78 freeway connector		2020	I-5	50.700	53.210			\$150,000	N	RTIP \# 26	\$150,000	\$393	\$149,607
57R	CA	SD	1	SR-94 and SR-125 freeway connector		2014	SR-94	7.800	11.100			\$110,000	N	RTIP \# 25	\$110,000	\$4,393	\$105,607
Note: In the "Reasonably Expected" scenario, the project cost is equal to the amount of revenue reasonably																	
From the Imperial Valley Association of Governments - Near Term Transportation Projects in 2002 \$																	
AA	CA	IMP	1	I-8 Winterhaven CVEF	2002	2012	I-8	95.000	97.000			\$35,000	N		\$36,225		\$34,155
A	CA	IMP	1	Construct 4 lane expressway from SR98 to I-8	2002	2012	SR-7	1.200	6.700		C	\$64,300	Y		\$66,551		
B	CA	IMP	1	Construct 4 Iane expressway "Brawley Bypass"	2002	2012	$\begin{array}{\|c\|} \hline \text { SR-78 } \\ \text { /SR- } \\ 111 \\ \hline \end{array}$	17.590	23.670	F	C	\$108,000	N		\$111,780		\$18,630
C	CA	IMP	1	Imperial Avenue Interchange Improvements	2002	2012	I-8	R37.0	R37.0	E	C	\$23,000	N		\$23,805		\$16,043
D	CA	IMP	1	SR-98 Corridor Improvements Widening and/or Realignment	2002	2012	SR-98	32.300	39.600	F	E	\$90,000	N		\$93,150		\$80,213
E	CA	IMP	1	Construct 4 lane extension - I-8 to Evans Hewes	2002	2012	$\begin{aligned} & \text { SR- } \\ & 115 \end{aligned}$	R3.2	L9.8	D	C	\$55,000	N		\$56,925		\$56,925


\#or ID	State ID	CO	$\begin{gathered} \text { Project } \\ \text { Mode } \\ \text { 1=Hw y } \\ \text { 2=Air } \\ \text { 3=Rail } \\ \text { 4=Water } \end{gathered}$	Description of Project	Year the Project Begins	Year the Project Becomes Opera tional	Highway ID	Specify the mile marker where the segment begins	Specify the mile marker where the segment ends	LOS before	LOS	Cost of Project in Thousands of Dollars Base Year Set by Agency	Fully Funded?	Comments	Cost of Project in Thousands of 2003 Dollars	Partial Funding in 2003 Dollars from Alloca tions	2003 Dollars Needed [cost allocations]
1-A	CA	IMP	1	Access Improvements - Proposed SDSU Campus in Brawley	2002	2012	SR-78	15.000	18.700	D	C	\$55,000	N		\$56,925		\$56,925
1	CA	IMP	1	Widening and/or realignment from SR111 to Dogwood Road	2002	2012	SR-98	30.300	32.300	F	E	\$30,000	N		\$31,050		\$31,050
2	CA	IMP	1	SR-111 Improvements - south of SR-98 to POE	2002	2012	$\begin{aligned} & \text { SR- } \\ & 111 \end{aligned}$	R0.0	R1.2	F	D	\$50,000	N		\$51,750		\$51,750
3	CA	IMP	1	Upgrade to 4 lane freeway from SR-98 to I-8 with interchange's) at several locations	2002	2012	$\begin{aligned} & \text { SR- } \\ & 111 \end{aligned}$	R1.2	R7.7	F	D	\$90,000	N		\$93,150		\$93,150
4	CA	IMP	1	Upgrade to 4 lane conventional highway from SR-78 to SR-115	2002	2012	$\begin{aligned} & \text { SR- } \\ & 111 \end{aligned}$	22.600	32.500	D	C	\$50,000	N		\$51,750		\$51,750
5	CA	IMP	1	Construct new eastwest facility Corridor from Atten Road to Keystone Road	2002	2012				D	C	\$120,000	N		\$124,200		\$120,000
6	CA	IMP	1	Construct new northsouth facility SR-78 to I-8 Corridor from Forrester Road Corridor	2002	2012				C	B	\$120,000	N		\$124,200		\$120,000
Note: $\quad$ Values are converted to 2003 dollars using a 3.5																	
From the San Diego Regional Transportation Improvement Plan [RTIP] in Dollars of Year Project is Completed																	
1	CA	SD	1	From Del Mar Heights Road To Via De La Valle - Construct Northbound Auxiliary Lane	2004		I-5					\$6,100	Y	Stand alone project	\$5,894		
2	CA	SD	1	From San Diego To Oceanside. Construct HOV/managed Lanes	2012	2015	I-5					\$10,000	N	Part of 1R through 6R	\$7,337		
3	CA	SD	1	Construct Managed Lanes (freeway Elements)	2004		I-15					\$238,000	Y	$\begin{aligned} & \text { Part of 9R } \\ & \text { through } 12 R \end{aligned}$	\$229,952		
4	CA	SD	1	Near Escondido From Clarence Lane To SR 78 - Construct Managed Lanes North Segment	2007	2012	I-15					\$5,000	N	$\begin{aligned} & \text { Part of 9R } \\ & \text { through 12R } \end{aligned}$	\$4,668		
5	CA	SD	1	From SR 163 To Route 15/56 Separation Construct Managed Lanes South Segment (freeway Component)	2007	2012	I-15					\$10,000	N	$\begin{aligned} & \text { Part of 9R } \\ & \text { through 12R } \end{aligned}$	\$9,335		


\#or ID	State ID	CO	Project Mode 1=Hwy $2=\mathrm{Air}$ 3=Rail $4=$ Water	Description of Project	Year the Project Begins	Year the Project Becomes Opera tional	Highway ID	Specify the mile marker where the segment begins	Specify the mile marker where the segment ends	LOS before	$\begin{aligned} & \text { LOS } \\ & \text { after } \end{aligned}$	Cost of Project in Thousands of Dollars Base Year Set by Agency	Fully Funded?	Comments	Cost of Project in Thousands of 2003 Dollars	Partial Funding in 2003 Dollars from Alloca tions	2003 Dollars Needed [cost allocations]
6	CA	SD	1	Mercy Road To Just South Of SR 56/i-15 Separation - Construct Northbound And Southbound Added And Auxiliary Lanes	2004		I-15					\$19,474	Y	Stand alone project	\$18,815		
7	CA	SD	1	San Diego - . 5 Mile South Of Mira Mar Way To . 5 Mile North Of Mira Mesa Blvd. -   Auxiliary Lanes (northbound And Southbound) Various Locations	2003		I-15					\$34,515	Y	Stand alone project	\$34,515		
13	CA	SD	1	In San Diego - Poway Road To Camino Del Norte; Also On Route 56 From Rancho Penasquitos Blvd. To East Of Route 15 Construct Auxiliary Lanes And Ramp Improvements	2003		I-15					\$9,940	Y	Stand alone project	\$9,940		
14	CA	SD	1	From SR 905 To SR 54 Construct 6-lane Fwy With Interchange With HOV Provisions	2004		$\begin{array}{r} \text { SR } \\ 125 \end{array}$					\$463,166	Y	$\begin{aligned} & \text { Part of } 31 R \\ & \text { and } 32 R \end{aligned}$	\$447,503		
15	CA	SD	1	I-805 To Otay Mesa Border Station Construct 6-lane Freeway (stages 2-4)	2004		$\begin{gathered} \text { SR } \\ 905 \end{gathered}$					\$203,097	N	Part of 37R	\$196,229		
16	CA	SD	1	From Airway Road To The Otay Mesa Port Of Entry - Construct Siempra Viva Road Interchange (stage 1)	2003		$\begin{gathered} \text { SR } \\ 905 \end{gathered}$					\$28,700	Y	Part of 37R	\$28,700		
17	CA	SD	1	In El Cajon - Second Street To Greenfield Drive - Construct Auxiliary Lane Eastbound And Replace Pedestrian Over crossing Bridge	2006		1-8					\$11,494	Y	Stand alone project	\$10,367		
18	CA	SD	1	Realignment Of I-5 \& I-805. New Virginia Ave. Lane Improvements, Increase Number Of Inspection Gates @ San Ysidro Poe (gen. Svs Agency Project)	2005		$\begin{gathered} \text { I- } \\ 5 / 805 \end{gathered}$					\$11,998	N	Part of 42R	\$11,200		


\# or ID	State ID	CO	Project Mode 1=Hwy 2=Air 3=Rail $4=$ Water	Description of Project	Year the Project Begins	Year the Project Becomes Opera tional	Highway ID	Specify the mile marker where the segment begins	Specify the mile marker where the segment ends	LOS before	$\begin{aligned} & \text { LOS } \\ & \text { after } \end{aligned}$	Cost of Project in Thousands of Dollars Base Year Set by Agency	Fully Funded?	Comments	Cost of Project in Thousands of 2003 Dollars	Partial Funding in 2003 Dollars from Alloca tions	2003 Dollars Needed [cost allocations]
19	CA	SD	3	Construct 1.2 Miles Of Double Track North Of Oceanside Blvd \& Buena Vista Lagoon	2003							\$6,000	N		\$6,000		
20	CA	SD	1	In And Near Lemon Grove On SR 125 From South Of Jamacha Blvd To SR 94, On SR 54 From I-805 To South Of Jamacha Blvd- Engineering For HOV Lanes.	2009	2010	$\begin{aligned} & \text { SR- } \\ & 125 \end{aligned}$					\$7,000	N	Part of 15R	\$5,502		
21	CA	SD	1	Near San Diego - Pine Valley Creek River Bridge \#57-692, Sweetwater River Bridge \#57-688 \& La Posta Creek Bridge \#57-756 - Rehabilitate Bridges	2004		1-8					\$30,233	Y	Maintenance \& Rehab of Bridges. No new capacity	\$29,211		
23	CA	SD	1	Border Of Mexico East Of Route 905/otay Mesa Border Crossing To Future Route 125/905   Junction - Construct 4 Iane Freeway And Truck Bypass Road	2008	2010	SR 11					\$8,000	N	Part of 38R	\$6,736		
24	CA	SD	1	From I-5 To SR 125.	2013	2016	SR 94					\$10,000	N	Not in M OBILITY 2030 RTP. Included only in Revenue Unconstrained scenario.	\$7,089		
25	CA	SD	1	Freeway To Freeway Connector	2009	2011	$\begin{array}{\|c\|} \hline \text { SR } \\ 94 / 12 \\ 5 \\ \hline \end{array}$					\$5,400	N	Part of 57R	\$4,393		
26	CA	SD	1	In The Cities Of Oceanside \& Carlsbad - Modify Interchange, Construct Auxiliary Lanes, Construct Direct Connectors	2010		$\begin{array}{\|c} \mathrm{I}-5 / \mathrm{SR} \\ 78 \end{array}$					\$500	N	Part of 56R	\$393		


\# or ID	State ID	CO	Project Mode 1=Hwy 2=Air 3=Rail $4=$ Water	Description of Project	Year the Project Begins	Year the Project Becomes Opera tional	$\begin{array}{\|c\|} \hline \text { High- } \\ \text { way } \\ \text { ID } \end{array}$	Specify the mile marker where the segment begins	Specify the mile marker where the segment ends	$\begin{gathered} \text { LOS } \\ \text { before } \end{gathered}$	$\begin{aligned} & \text { LOS } \\ & \text { after } \end{aligned}$	Cost of Project in Thousands of Dollars Base Year Set by Agency		Comments	Cost of Project in Thousands of 2003 Dollars	Partial Funding in 2003 Dollars from Alloca tions	2003 Dollars Needed [cost allocations]
27	CA	SD	1	Chula Vista - Orange Avenue To Palomar Street - Construct Sound walls; Widen Bridge Deck, Ramp And Add Auxiliary Lanes, Utility Relocation.	2003		1-805					\$21,831	Y	Fully Funded and soon to be under construction	\$21,831		
28	CA	SD	1	Interchange   Modifications And Improvements At I805 And East H Street, Including Street And Ramp Widening, Restriping, Signal Improvements And Landscaping.	2005		1-805					\$3,114	Y	Fully Funded and soon to be under construction	\$2,907		
30	CA	SD	1	On I-5, at Manchester,   4 Lanes Plus One Auxiliary Lane Northbound And Southbound Interchange Improvements	2011	2012	I-5					\$2,425	$N$	Stand Alone	\$1,842		
32	CA	SD	3	Oceanside To Escondido - Design 22 Mile Extension Including 15 Stations And Maintenance Facility	2004		Para	allels SR 78				\$351,520	Y		\$339,633		
34	CA	SD	1	Widen From 4 To 6 Lanes With Intersection Improvements, Raised Median And Left Turn Pockets. Phase 2: On Sr94 Extend Jamacha Blvd. Phase 3: On Sr54 Extend From Cuyamaca College East To Brabham St	2004		$\begin{aligned} & \text { SR } \\ & 54 / \\ & 94 \end{aligned}$					\$8,297	Y	Stand Alone	\$8,016		


\#or ID	$\begin{aligned} & \hline \text { State } \\ & \text { ID } \end{aligned}$	CO	Project Mode 1=Hwy 2=Air 3=Rail 4=Water	Description of Project	Year the Project Begins	Year the Project Becomes Opera tional	$\begin{gathered} \text { High- } \\ \text { way } \\ \text { ID } \end{gathered}$	Specify the mile marker where the segment begins	Specify the mile marker where the segment ends	$\begin{gathered} \text { LOS } \\ \text { before } \end{gathered}$	$\begin{aligned} & \text { LOS } \\ & \text { after } \end{aligned}$	Cost of Project in Thousands of Dollars Base Year Set by Agency	Fully Funded?	Comments	Cost of Project in Thousands of 2003 Dollars	Partial Funding in 2003 Dollars from Alloca tions	2003 Dollars Needed [cost allocations]
36	CA	SD	3	San Diego - Four Light Rail Transit Stations In East Village Area Of Downtown - Platform Improvements, Passenger Amenities, Track Realignment, Lighting, Landscape	2002							\$24,641	Y		\$25,503		
37	CA	SD	1	United States/Mexico International Border - Rebuild Station To Create A Trolley Plaza With 3 Platforms, New Shelters, Paving And Landscaping. Also Re-routes Traffic To Eliminate Pedestrian Conflicts.	2003							\$16,408	N	Stand alone project. Total Cost \$22.1 M	\$16,408		
38	CA	SD	3	Design/construct Light Rail Line From Old Town Transit Center To Balboa Ave; Conduct Alternative Alignment Study; Begin Per From Balboa Ave To University City; Midcoast Corridor Planning/environme ntal	2005	2008						\$100,090	N		\$93,435		
39	CA	SD	3	$\begin{gathered} \text { Construct } \\ \text { Commuter Rail } \\ \text { Station At Nobel } \\ \text { Drive } \\ \hline \end{gathered}$	2004							\$13,525	N		\$13,068		
40	CA	SD	3	5.8 Mile Extension Of San Diego Blue Line With 4 Stations, Including Tunnel At San Diego State University Campus	2003							\$444,000	Y		\$444,000		


$\begin{aligned} & \hline \text { \#or } \\ & \text { ID } \end{aligned}$	State ID	CO	$\begin{gathered} \text { Project } \\ \text { Mode } \\ \text { 1=Hwy } \\ \text { 2=Air } \\ 3=\text { Rail } \\ 4=\text { Water } \end{gathered}$	Description of Project	Year the Project Begins	Year the Project Becomes Opera tional	Highway ID	Specify the mile marker where the segment begins	Specify the mile marker where the segment ends	LOS before	$\begin{aligned} & \text { LOS } \\ & \text { after } \end{aligned}$	Cost of Project in Thousands of Dollars Base Year Set by Agency	Fully Fund -ed?	Comments	Cost of Project in Thousands of 2003 Dollars	Partial Funding in 2003 Dollars from Allocations	2003   Dollars   Needed [cost allocations]
41	CA	SD	3	From Old Town To Mission San Diego Station - Enhancements To Blue Line Light Rail Trolley	2002							\$221,809	Y		\$2,072		
43	CA	SD	1	Freeway To Freeway Interchange	2007	2008	$\begin{gathered} \text { I-5/SR } \\ 56 \end{gathered}$					\$4,303	N	Part of 55R	\$3,750		
45	CA	SD	1	I-5 To I-15 Widen And Install Traffic Signals, Per Only (cip 52274)			1-5/15					\$2,558	N	Stand alone project.	\$2,229		
47	CA	SD	1	Construct New Interchange At Smilax Road. (cip-108)			SR 78					\$600	N		\$523		

Note: Values are converted to 2003 dollars using a 3.5\% inflation rate - the rate used by the California Department of Finance.
From the Imperial Valley Association of Governments - Long Term Transportation Projects in 2002 \$

$\begin{aligned} & \hline \text { \#or } \\ & \text { ID } \end{aligned}$	State ID	CO	$\begin{gathered} \hline \text { Project } \\ \text { Mode } \\ \text { 1=Hw y } \\ \text { 2=Air } \\ \text { 3=Rail } \\ \text { 4=Water } \end{gathered}$	Description of Project	Year the   Project   Begins	Year the   Project Becomes Opera tional	Highway ID	Specify the mile marker where the segment begins	Specify the mile marker where the segment ends	$\begin{gathered} \text { LOS } \\ \text { before } \end{gathered}$	$\begin{aligned} & \text { LOS } \\ & \text { after } \end{aligned}$	Cost of Project in Thousands of Dollars Base Year Set by Agency	Fully Funded?	Comments	Cost of Project in Thousands of 2003 Dollars	Partial   Funding in 2003   Dollars from   Allocations	2003 Dollars Needed [cost allocations]
7	CA	IMP	1	Construct bridge structure at railroad crossing	2012	2022	SR-98	30.300	32.300	F	C	\$1,500	N		\$1,553		\$1,553
8	CA	IMP	1	Construct new north-south facility West of SR-111 from I8 to SR-98	2012	2022	SR-86	6.010	$\begin{gathered} \text { approx. } \\ 0.0 \end{gathered}$	F	D	\$90,000	N		\$93,150		\$93,150
9	CA	IMP	1	Construct Westmorland Bypass Construct 4 lane expressway	2012	2022	$\begin{gathered} \text { SR- } \\ 78 / \mathrm{SR}- \\ 86 \end{gathered}$	24.200	28.000	C	B	\$80,000	N		\$82,800		\$82,800


$\begin{aligned} & \hline \text { \#or } \\ & \text { ID } \end{aligned}$	State ID	CO	Project Mode 1=Hw y 2=Air 3=Rail $4=$ Water	Description of Project	Year the Project Begins	Year the Project Becomes Opera tional	Highway ID	Specify the mile marker where the segment begins	Specify the mile marker where the segment ends	LOS before	LOS after	Cost of Project in Thousands of Dollars Base Year Set by Agency	Fully Fund -ed?	Comments	Cost of Project in Thousands of 2003 Dollars	Partial Funding in 2003 Dollars from Allocations	2003   Dollars   Needed [cost allocations]
10	CA	IMP	1	Improvements from SR-115 to Riverside County Line	2012	2022	SR-78	21.200	80.740	B	B	\$50,000	N		\$51,750		\$51,750
11	CA	IMP	1	Widen to 8 lanes from new northsouth route to SR-111	2012	2022	1-8	23.480	40.940	D	C	\$90,000	N		\$93,150		\$93,150
12	CA	IMP	1	Interchange improvements from I-8 to SR78	2012	2022	SR-111	R1.2	R7.7	E	D	\$60,000	N		\$62,100		\$62,100
13	CA	IMP	1	Construct interchange at Austin Road	2022		I-8	34.000	37.000	E	C	\$24,000	N		\$24,840		\$24,840
14	CA	IMP	1	Construct new   4 lane   expressway   form SR-78 to   Brawley Bypass	2022		SR-115	21.200	$\begin{gathered} \text { approx } \\ 25.0 \end{gathered}$	D	B	\$36,000	N		\$37,260		\$37,260
15	CA	IMP	1		2022		SR-115	21.200	31.600	C	B	\$70,000	N		\$72,450		\$72,450
16	CA	IMP	1	Widen to 4 lane expressway from Evan Hewes Highway to SR-78	2022		SR-115	R9.3	21.200	C	B	\$70,000	N		\$72,450		\$72,450
17	CA	IMP	1	Widen to 4 lane conventional or construct interchange improvements	2022		SR-186	0.000	2.100	D	C	\$10,000	N		\$10,350		\$10,350

Note: Values are converted to 2003 dollars using a $3.5 \%$ inflation rate - the rate used by the California Department of Finance.

CHIHUAHUA TRANSPORTATION PROJECTS

Table 4
Chihuahua Transportation Project Data

Estudio de Necesidades de Infraestructura de Transporte Fronterizo [BINS]								
Proyectos tienen que estar dentro de los 100 Km . de la frontera México-US								
\# 1	\#2	\#3	\#4	\#5	\#6	\#7	\#8	\#9
Nombre e ID del Proyecto	$\begin{gathered} \hline \text { Estado } \\ \text { ID } \end{gathered}$	Municipio Donde el Proyecto Está Ubicado	Tipo de Proyecto 1=carreteras 2=aeropuerto 3र्नerrocarril 4=Puerto	Descripción del Proyecto	Año de Iniciación del Proyecto	Año   Planeado   Parala terminación del Proyecto	Costo del Proyecto en Pesos Constantes	Completamente Financiados?
(CARR. JANOS-AGUA PRIETA,km. 61 )-EL BERRENDO.	Cl	JANOS	1	PAVIMENTACION CON RIEGOS DE SELLO, CAMINO 9.00 M. DE ANCHO.		2004	30,000,000	N
ZARAGOZA-DR. PORFIRIO PARRA.	Cl	JUAREZGUADALUPE	1	NUEVA CARRETERA, 12.00 M. DEANCHO, PAVIMENTACION CON CONCRETO ASFALTICO.		2006	120,000,000	N
SAMALAYUCA GUADALUPE. (KM. 320 CARR. CHIH-CD. JUAREZ--DR. PORFIRIO PARRA).	Cl	JUAREZGUADALUPE	1	PAVIMENTACION CON CONCRETO ASFALTICO, CAMINO 12.00 M . DE ANCHO.		2004	165,000,000	N
LA MULA -OJINAGA ( KM. 210.1 CARR. CAMARGO-OJINAGA--OJ INAGA).	Cl	OJINAGA	1	MODERNIZACION A 12.00 M. DE ANCHO, PAVIMENTACION CON CONCRETO ASFALTICO.		2004	188,000,000	N

## COAHUILA TRANSPORTATION PROJ ECTS

Table 5
Coahuila Transportation Project Data

Estudio de Necesidades de Infraestructura de Transporte Fronterizo [BINS]									
Proyectos tienen que estar dentro de los 100 Km . de la frontera M éxico-US									
\# 1	\#2	\#3	\#4	\#5	\#8	\#6	\#7		\#9
Nombre e ID del Proyecto	$\begin{aligned} & \hline \text { Estado } \\ & \text { ID } \end{aligned}$	Municipio	Tipo de Proyecto 1=carreteras 2=aeropuerto 3-ferrocarril 4=Puerto	Descripción del Proyecto	Carreter a Nombre e ID	Año de Iniciación del Proyecto	Año Planeado Para la terminación del Proyecto	Costo del Proyecto en Pesos Constantes	Financiados Completamente?
$2^{\circ}$ Puente Internacional	Coahuila	Acuña	1	Construcción de Puente		2002	2007	200,000,000	N
Aeropuerto Internacional	Coahuila	Acuña	2	Construcción de pista 13/31 de 1750m.x30m.		2003	2005	62,000,000	N
$\begin{gathered} \text { Carretera } \\ \text { Zaragoza-Cd. } \\ \text { Acuña } \end{gathered}$	Coahuila	Acuña	1	Ampliación de corona de 7 a 12 m . En 91.8 km . Rea	29		2003	276,000,000	Y
$\begin{gathered} \text { Puente "La } \\ \text { Linda" } \\ \hline \end{gathered}$	Coahuila	Acuña	1	Reapertura del Puente				200,000,000	N
El Melón-La Linda	Coahuila	Acuña	1	Construcción de carretera 150 km . Corona 7 m .			2006	375,000,000	N
Acceso Aeropuerto Acuña	Coahuila	Acuña	1	Ampliación en 10 km. De la secc. De 7 a 12 km .	Acuña Sta. Eulalia	2003	2004	31,000,000	Y
PaD Carr 57 con tramo M orelos Nava	Coahuila	Morelos	1	Construcción de Paso a Desnivel	57	2003	2005	36,000,000	N
Gazas en PaD carr. 57 en tramo AllendeMorelos	Coahuila	Allende	1	Construcción de enlaces viales	57	2003	2005	3,100,000	N
Espiral vial	Coahuila	Acuña	1	$\begin{gathered} \hline \text { Vialidad para } \\ \text { puente } \\ \text { internacional } 500 \\ \text { mts. } \end{gathered}$		2003	2004	15,500,000	N
Libramiento de Acuña	Coahuila	Acuña	1	27.5 km			2005	226,000,000	N

NEW MEXICO TRANSPORTATION PROJECTS

Table 6a
New MexicoTransportation Project Data

Bi-National Border Transportation Infrastructure Needs Assessment Study [BINS]						
Projects must be Within 100 km of the US-M exico Border						
\# 1	\#2	\#3	\#4	\#5	\#6	\#7
Project ID	$\begin{gathered} \text { State } \\ \text { ID } \end{gathered}$	County in Which Project Resides	Project Mode 1=Hwy 2=Airport 3=Rail 4=M aritime	Description of Project	Year the Project Begins	Year the Project Becomes Operational
New Mexico State Transportation Improvement Plan [STIP]						
2875	NM	Dona Ana	1	4-Lane Construction	2004	2004
3031	NM	Dona Ana	1	4-Lane Construction	2008	2008
Governor Richardson's Investment Program						
NA	NM	Dona Ana	1	6-Lane Construction ${ }^{1}$	2010	2010
NA	NM	Dona Ana	1	Sunland Park Drive Extension ${ }^{1}$	2005	2006
NA	NM	Dona Ana	1	6-Lane Construction	2020	2020
NA	NM	Dona Ana	3	Construct New Intermodal Center at Santa Teresa	2020	2020
NA	NM	Dona Ana	3	New RR Crossing at Santa Teresa	2020	2020
NA	NM	Dona Ana	2	Strengthening of Taxiways	2003	2007
NA	NM	Dona Ana	2	Extension of Runway	2010	2010
NA	NM	Dona Ana	2	New Runway @DAC Airport	2020	2020

${ }^{1}$ In December 2003, New Mexico received state legislative approval to issue bonds for the I-10 project and the Sunland Park Drive Extension project.

Table 6b
New MexicoTransportation Project Data

New MexicoTransportation Project Data
Bi-National Border Transportation Infrastructure Needs Assessment Study [BINS]
Projects must be Within 100 km of the US-M exico Border

\# 1	$\ll$ Highway Projects Data \#8 $\Longrightarrow$								\#9	\#10	\#11
Project ID	Highway ID	Specify the mile marker where the segment begins	```Specify the mile marker where the segment ends```	Specify the Level of Service [A to F] for each segment during the PM peak hour before Project Completion	Specify the Level of Service [A to F] for each segment during the PM peak hour after Project Completion	Specify the traffic   volume for each segment during the PM peak hour before Project Completion	Specify the segment capacity during the PM peak hour before Project Completion	Specify the segment capacity during the PM peak hour after Project Completion	Cost of Project in Thousands of Constant Dollars	Specify   Base   Year   of   Dollars	Fully Funded?
2875	NM273	3.100	6.000	C	A	948	2590		\$3,000	2003	Y
3031	NM273	6.000	9.600	C	A	699	2590		\$6,000	2003	Y
NA	I-10	146.000	164.000						\$48,000	2003	Y
NA	NM273	-	-						\$13,000	2003	N
NA	I-10	146.000	164.000	C	B	4436	7200	9000			N
NA											N
NA											N
NA											N
NA											N
NA											N

NUEVO LEÓN TRANSPORTATION PROJ ECTS

Table 7
Nuevo León Transportation Project Data

Estudio de Necesidades de Infraestructura de Transporte Fronterizo [BINS]										
Proyectos tienen que estar dentro de los 100 Km . de Ia frontera M éxico-US										
\# 1	\#2	\#3	\#4	\#5	\#6	\#7		Proye	ctos de Carr	tera \#8
Nombre e ID del Proyecto	Estado ID	Municipio Donde el Proyecto Está Ubicado	Tipo de Proyecto 1=carreteras 2=aeropuerto 3-ferrocarril 4=Puerto	Descripción del Proyecto	Año de Iniciación del Proyecto	Año   Planeado   Parala   terminación del   Proyecto	Costo del Proyecto en Pesos Constantes	Carretera Nombre e ID	El Km.   Inicial del Segmento	El Km.   Final del Segmento
N/A	NL		1	Monterrey-Colombia Corridor Improvements				None	None	None
NO TIME DATA										

## SONORA TRANSPORTATION PROJ ECTS

Table 8a
Información para Proyectos de Transporte de Sonora

Estudio de Necesidades de Infraestructura de Transporte Fronterizo [BINS, por sus siglas en inglés]							
Proyectos tienen que estar dentro de los 100 Km . de la frontera México-US							
		\# 1	\#3	\#4	\#5	\#6	\#7
Numero de Proyecto	Estado	Nombre e ID del Proyecto	Municipio Donde el Proyecto Está Ubicado	Tipo de Proyecto 1=carreteras 2=aeropuerto 3र्नerrocarril 4=Puerto	Descripción del Proyecto	Año de Iniciación del Proyecto	Año   Planeado Para la terminación del Proyecto
1	SO	Modernización del acceso sur a San Luis Río Colorado	San Luis Río Colorado	1	Modernización del acceso sur a la ciudad de San Luis Río Colorado, Sonora, a una sección tipo blevar del kilómetro $192+100$ al $192+400$	2003	2003
2	SO	Paso por Agua Prieta	Agua Prieta	1	Modernizacion del Paso por Agua Prieta, una sección tipo Bulevar, del kilómetro 157+000 al 159+200	2003	2003
3	SO	Construcción del tercer carril en tramos aislados	Imuris-Cananea	1	Construcción del tercer carril de ascenso, mediante la ampliación de las terracerias, obras de drenaje, pavimento, obras complementarias y señalamiento, en tramos aislados (kilómetro $90+756$ al $97+160$ y   kilómetro 143+891 al 153.990)	2003	2003
4	SO	Modernizacion del tramo Pitiquito Caborca	Pitiquito-Caborca	1	Modernización del subtramo Pitiquito Caborca y paso por Caborca,ampliando el ancho de la corona a una sección tipo A2 de 12.00 mts. Y ampliando las estructuras existentes, del kilómetro $94+100$ al 108+400.	2003	2003

Table 8b
Información para Proyectos de Transporte de Sonora

Proyectos tienen que estar dentro de los 100 Km . de la frontera M éxico-US					
	8 a	8b	8c	8d	8 e
Numero de Proyecto	Carretera Nombre eID	El Km. Inicial del Segmento	El Km. Final del Segmento	Nivel de Servicio Para el Segmento Antes del Inicio del Proyecto	Nivel de Servicio Para el Segmento Después de la Terminación del Proyecto
1	Federal Núm. 2 " Playa Gral. Lauro del Villar - Tijuana	192+100	195+400	C	A
2	Federal Núm. 2 " Playa Gral. Lauro del Villar - Tijuana	157+000	159+200	D	B
3	Federal Núm. 2 " Playa Gral. Lauro del Villar - Tijuana	90+756	153+990	E	B
4	Federal Núm. 2 "Playa Gral. Lauro del Villar - Tijuana	94+100	108+400	C	A

Table 8c
Información para Proyectos de Transporte de Sonora

Estudio de Necesidades de Infraestructura de Transporte Fronterizo [BINS, por sus siglas en inglés]							
Proyectos tienen que estar dentro de los 100 Km . de la frontera M éxico-US							
	8 f	8 g	8h	8 i	\#9	\#10	\#11
					$<$ \$ Información $\Longrightarrow$		
Numero de Proyecto	Volumen de Trafico Para el Segmento en la Hora Pico de Ia Tarde Antes del Inicio del Proyecto	Volumen de Trafico Para el Segmento en la Hora Pico de la Tarde Después de la Terminación del Proyecto	Capacidad de Trafico del Segmento en Ia Hora Pico de la Tarde Antes del Inicio del Proyecto	Capacidad de Trafico del Segmento en la Hora Pico de la Tarde Después de la Terminación del Proyecto	Costo del Proyecto en Pesos Constantes	Año Base Parala Estimación del Peso Constante	Completamente Financiados?
1	1,100	1,100	1,200	3,600	12,600,000	2003	Y
2	1,500	1,500	1,300	4,500	29,300,000	2003	Y
3	400	400	600	2,200	28,800,000	2003	Y
4	800	2,000	1,000	2,000	35,600,000	2003	Y

## TAMAULIPAS TRANSPORTATION PROJ ECTS

Table 9a
Tamaulipas Transportation Project Data

Estudio de Necesidades de Infraestructura de Transporte Fronterizo [BINS]						
Proyectos tienen que estar dentro de los 100 Km . de la frontera M éxico-US						
\# 1	\#2	\#3	\#4	\#5	\#6	\#7
Nombre e ID del Proyecto	Estado ID	Municipio Donde el Proyecto Está Ubicado	Tipo de   Proyecto 1=carreteras 2=aeropuerto 3-ferrocarril 4=Puerto	Descripción del Proyecto	Año de Iniciación del Proyecto	Año Planeado   Para la terminación del Proyecto
Yescas-Matamoros	TM	Matamoros	1	Modernización	2002	2004
Lib. De Reynosa	TM	Reynosa	1	Construcción	2003	2004
Tejon-Reynosa	TM	Reynosa	1	Modernización	2003	2005
Camargo-Lim. De Estado	TM	Camargo	1	Modernización	2004	2005
Cd. Mier-Lim. De Estado	TM	Mier	1	Modernización	2005	2006
N. Laredo-Reynosa	TM	N.L-Rey.	1	Modernización	2006	2007
Lib. De Valle Hermoso	TM	V.Hermoso	1	Construcción	2005	2006
Puente Diaz Ordaz	TM	Diaz Ordaz	1	Sustitución	2004	2005
Rio Bravo-Donna	TM	Rio Bravo	1	Construcción	2005	2006
Puente Nuevo Progreso	TM	Rio Bravo	1	Sustitución	2002	2003
Puente Camargo	TM	Camargo	1	Ampliación	2004	2005
Puente Anzalduas	TM	Reynosa	1	Construcción	2003	2005
Puente F.FC.C. Mat.	TM	Matamoros	3	Construcción	2004	2005
Puente int. N. Laredo 4-5	TM	N. Laredo	1	Construcción	2006	2007
P.S.V. En Matamoros	TM	Matamoros	1	Const. Puente	2003	2004
Monclova-Cd. Guerrero	TM		1	Pendiente	2005	2007
Puente N. Cd Guerrero-Zapata	TM		1	Construcción	2004	2005

Table 9b
Tamaulipas Transportation Projects

Estudio de Necesidades de Infraestructura de Transporte Fronterizo [BINS]											
Proyectos tienen que estar dentro de los 100 Km . de la frontera M éxico-US											
\# 1	$<$ Proyectos de Carretera \#8 $\Longrightarrow$									\#9	\#10
	8a	8b	8c	8d	8 e	8 f	8 g	8h	8 i		
Nombre e ID del Proyecto	Carretera Nombre e ID	El Km. Inicial del Segmento	El Km. Final del Segmento	Nivel de Servicio Para el Segmento Antes del Inicio del Proyecto	Nivel de Servicio Para el Segmento Después de la Terminación del Proyecto	Volumen de Trafico Para el Segmento en Ia Hora Pico de la Tarde Antes del Inicio del Proyecto	Volumen de   Trafico Para el   Segmento en la Hora Pico de la Tarde Después de la Terminación del Proyecto	Capacidad de Trafico del Segmento en la Hora Pico de la Tarde Antes del Inicio del Proyecto	Capacidad de   Trafico del Segmento en la Hora Pico de la Tarde Después de la Terminación del Proyecto	Costo del Proyecto en Pesos Constantes	Completamente   Financiados?
YescasMatamoros	180	254.000	312.000	B	A2	4915	5,500	2,800	4,000	350,000,000	Y
Lib. De Reynosa	2			B	A2	13472	14000	2800	6000	425,000,000	Y
Tejon-Reynosa	97	0.000	113.250	B	A2	3457	4000	2800	4000	500,000,000	N
Camargo-Lim. De Estado		0.000	22.800	C	A2	4449	5000	2800	4000	150,000,000	N
Cd. Mier-Lim. De Estado	54	132.800	156.210	B	A2	3146	4000	2800	4000	141,000,000	N
N. LaredoReynosa	2	35.680	221.080	B	A2	3739	4200	2800	6000	745,000,000	N
Lib. De Valle Hermoso	99				A2	3620	4500	2800	4000	72,000,000	N
Puente Diaz Ordaz										15,000,000	N
Rio BravoDonna										40,000,000	N
Puente Nuevo Progreso				C	A2	7000				36,000,000	Y
Puente Camargo				C	A2					25,000,000	Y
Puente   Anzalduas					A2					250,000,000	N


Nombre e ID del Proyecto	Carretera Nombre e ID	El Km. Inicial del Segmento	El Km. Final del Segmento	Nivel de Servicio   Para el Segmento Antes del Inicio del Proyecto	Nivel de Servicio Para el Segmento Después de la Terminación del Proyecto	Volumen de Trafico Para el Segmento en la Hora Pico de la Tarde Antes del Inicio del Proyecto	Volumen de   Trafico Para   el   Segmento en la Hora Pico de la Tarde Después de la Terminación del Proyecto	Capacidad de Trafico del Segmento en Ia Hora Pico de la Tarde Antes del Inicio del Proyecto	Capacidad de   Trafico del Segmento en la Hora Pico de la Tarde Después de la Terminación del Proyecto	Costo del Proyecto en Pesos Constantes	Completamente Financiados?
Puente F.FC.C. Mat.										90,000,000	N
Puente int. N. Laredo 4-5					A2					150,000,000	N
P.S.V. En Matamoros					A2					30,000,000	Y
Mondova-San Ingnacio		0.000	180.000	C	A2					800,000,000	N
Puente N. Cd GuerreroZapata										100,000,000	N

## TEXAS TRANSPORTATION PROJ ECTS

Table 10
Texas Transportation Project Data

Bi-National Border Transportation Infrastructure Needs Assessment Study [BINS]													
Projects must be Within 100 km of the US-Mexico Border													
\# 1	\#2	\#3	\#4	\#5	\# 6	\#7	$<\stackrel{\text { Highw ay Projects Data \#8 }}{\Longrightarrow}$				\#9	\#10	
							8a	8b	8c	8d	$<$ Dollar D	Data $\Longrightarrow$	
$\begin{array}{\|c\|} \text { Project } \\ \text { Number or ID } \\ \hline \end{array}$	State ID	County in Which Project Resides	Project Mode 1=Hwy 2=Airport 3=Rail 4=Maritime	Description of Project	Year the Project Begins	Year the Project Become Operational	$\begin{gathered} \text { High- } \\ \text { way } \\ \text { ID } \end{gathered}$	Specify the mile marker where the segment begins	Specify the mile marker where the segment ends	Specify the Level of Service [A to F] for each segment during the PM peak hour before Project Completion	Cost of Project in Thousands of Constant 2002 Dollars	$\begin{array}{\|c\|} \hline \text { Fully } \\ \text { Funded } \\ ? \end{array}$	Cost of Project in Thousands of Constant 2003 Dollars
Texas Unified Transportation Program - Priority 1													
NH 99(462)	TX	Webb	1	Grad Structures, Base \& Surfacing	1999		135	11.000	7.300	A	\$59,654	Y	\$62,040
RW 18-6-143	TX	Webb	1	Utility Adjustment	1999		135	0.000	0.000	C	\$874	Y	\$908
CL 86-14-17	TX	Webb	1	Landscape Establishment	1997		LP 20	0.000	0.000	NA	\$99	Y	\$103
$\begin{gathered} \text { STP 99(204) } \\ \text { HES } \\ \hline \end{gathered}$	TX	Hidalgo	1	Construct, grade, seperations	2000		US 83	13.175	13.375	NA	\$2,110	Y	\$2,194
$\begin{gathered} \text { STP 99(204) } \\ \text { HES } \\ \hline \end{gathered}$	TX	Hidalgo	1	Grade Separations	2000		US 83	14.604	14.804	NA	\$2,332	Y	\$2,425
C 39-17-139	TX	Hidalgo	1	Construct four main lanes \& overpasses	2000		US 83	10.600	16.100	NA	\$28,711	Y	\$29,859
C 39-18-75	TX	Hidalgo	1	Reconst. And Add 2 Lanes \& Widen Strs.	2000		US 83	29.904	34.151	NA	\$39,644	Y	\$41,230
NH 2000(662)	TX	Webb	1	Grad, Struc, Base, Surf, Sign, Mark, Sig	2000		US 83	10.219	17.048	NA	\$17,937	Y	\$18,654
M G 2001(257)	TX	Cameron	1	Widen Freeway to 6 Lanes	2001		US 77	12.717	25.628	NA	\$61,347	Y	\$63,801
NH 2000(732)	TX	Hidalgo	1	Widen Gr. Strs. \& Surf.	2001		$\begin{gathered} \hline \text { BU } \\ 83-\mathrm{A} \end{gathered}$	2.352	7.664	NA	\$8,296	Y	\$8,628
$\begin{gathered} \hline \text { DMO } \\ 2001(501) \\ \hline \end{gathered}$	TX	Hidalgo	1	Construct Interchange	2001		$\begin{aligned} & \hline \text { US } \\ & 281 \end{aligned}$	24.850	26.510	NA	\$7,945	Y	\$8,263
$\begin{gathered} \text { DMO } \\ 2001(501) \\ \hline \end{gathered}$	TX	Hidalgo	1	Const. Overpass Structure	2001		$\begin{aligned} & \text { US } \\ & 281 \\ & \hline \end{aligned}$	14.820	16.780	NA	\$9,904	Y	\$10,300
M G 2001(189)	TX	Hidalgo	1	Gr, Strs, and Surf.	2001		US83	16.058	21.424	NA	\$36,598	Y	\$38,062
MG 2001(188)	TX	Hudspeth	1	Rehab of Mainlanes	2001		IH 10	43.222	46.201	NA	\$1,744	Y	\$1,814


$\begin{array}{\|c\|} \hline \text { Project } \\ \text { Number or ID } \\ \hline \end{array}$	State ID	County in Which Project Resides	Project Mode 1=Hwy 2=Airport 3=Rail 4=Maritime	Description of Project	Year the Project Begins	Year the Project Become Operational	$\left\lvert\, \begin{gathered} \text { High- } \\ \text { way } \\ \text { ID } \end{gathered}\right.$	Specify the mile marker where the segment begins	Specify the mile marker where the segment ends	Specify the Level of Service [A to F] for each segment during the PM peak hour before Project Completion	Cost of Project in Thousands of Constant 2002 Dollars	$\begin{array}{\|c\|} \hline \text { Fully } \\ \text { Funded } \\ ? \end{array}$	Cost of Project in Thousands of Constant 2003 Dollars
MG 2001(188)	TX	Hudspeth	1	Rehab of M ainlanes	2001		IH 10	0.000	8.995	NA	\$20,617	Y	\$21,442
IM 10-1(229)	TX	Hudspeth	1	Rehab of Mainlanes	2001		IH 10	55.070	58.680	NA	\$2,818	Y	\$2,931
STP 2001(329)R	TX	Maverick	1	Reconstruct Existing Roadway (NonFreeway)	2001		$\begin{array}{\|c\|} \hline \text { BU } \\ \text { 277N } \\ \text { ETC } \\ \hline \end{array}$	1.550	3.150	NA	\$3,857	Y	\$4,011
M G 2001(341)	TX	Webb	1	Gr. Wid Strs. Base \& Pave	2001		LP 20	4.090	8.090	NA	\$15,382	Y	\$15,997
M G 2001(341)	TX	Webb	1	Grading Base, Structures \& surface	2001		LP 20	10.900	8.500	NA	\$2,641	Y	\$2,747
NH 2002(283)	TX	Dimmit	1	Base, Grading \& Surfacing	2002		$\begin{aligned} & \text { US } \\ & 277 \end{aligned}$	7.700	16.817	NA	\$3,569	Y	\$3,712
NH 2001(622)	TX	El Paso	1	Install CTB Barrier	2002		US 85	2.133	5.143	NA	\$2,068	Y	\$2,151
NH 2002(588)	TX	Hidalgo	1	Gr. Strs. And Surf.	2002		US 83	34.167	42.399	NA	\$82,579	Y	\$85,882
IM 10-1(232)	TX	Hudspeth	1	IH 10 Rehabilitation	2002		IH 10	52.014	54.364	NA	\$2,771	Y	\$2,882
1M 10-1(231)	TX	Hudspeth	1	IH 10 Rehabilitation	2002		IH 10	55.073	64.118	NA	\$19,029	$Y$	\$19,790
CPM 18-10-7	TX	LaSalle	1	Asphalt Overlay	2002		$\begin{gathered} \hline \mathrm{BI} \mathrm{35-} \\ \mathrm{~B} \end{gathered}$	1.000	2.031	C-D	\$6,827	Y	\$7,100
CPM 38-6-36	TX	Starr	1	ACP Overlay	2002		US 83	13.820	0.142	NA	\$4,335	Y	\$4,508
NH 2002(731)	TX	Zapata	1	West Veleno Bridge	2002		US 83	29.906	32.637	NA	\$5,493	Y	\$5,713
NH 2003(127)	TX	Cameron	1	Landscape Development	2003		US 83	0.000	0.001	NA	\$53	Y	\$55
CPM 1-480	TX	El Paso	1	Overlay	2003		$\begin{array}{\|c\|} \hline \text { US } 62 \\ \text { ETC } \end{array}$	0.000	0.262	NA	\$2,978	Y	\$3,097
***	TX	Presidio	3	Rehab of South Orient railroad to Class 2 track standards (25 mph ) and restart of operations along line	2003		NA	NA	NA	NA	\$1,337	Y	\$1,390
NH 2002(787)	TX	Starr	1	Upgrade and Widen to Four Lanes Urban	2003		US 83	12.800	15.870	NA	\$4,893	Y	\$5,089
CPM 38-7-51	TX	Starr	1	ACP Overlay	2003		US83	16.713	28.658	NA	\$4,899	Y	\$5,095
IM 35-1(72)	TX	Webb	1	Landscape Development	2003		135	4.168	4.568	NA	\$758	Y	\$788
IM 35-1(72)	TX	Webb	1	$\begin{gathered} \text { Landscape } \\ \text { Development } \end{gathered}$	2003		IH 35	4.168	4.568	NA	\$757	Y	\$787
NH 2002(80)	TX	Cameron	1	Gr., Strs, \& Surf.	NA		US 77	19.563	21.543	NA	\$67,994	Y	\$70,714


Project Number or ID	State ID	County in Which Project Resides	Project   Mode   1=Hwy   2=Airport   3=Rail   $4=$ Maritime	Description of Project	Year the Project Begins	Year the Project Become Operational	$\left\|\begin{array}{c} \text { High- } \\ \text { way } \\ \text { ID } \end{array}\right\|$	Specify the mile marker where the segment begins	Specify the mile marker where the segment ends	Specify the Level of Service [A to F] for each segment during the PM peak hour before Project Completion	Cost of Project in Thousands of Constant 2002 Dollars	$\begin{array}{\|c\|} \hline \text { Fully } \\ \text { Funded } \\ ? \end{array}$	Cost of Project in Thousands of Constant 2003 Dollars
NH 2003(369)	TX	Cameron	1	Construct Six Lane Expressway	NA		US 77	37.622	33.879	NA	\$72,345	Y	\$75,239
NH 2003(25)	TX	Cameron	1	Gr, Strs, and Surf.	NA		US 77	31.606	28.602	NA	\$8,137	Y	\$8,462
C 167-1-89	TX	El Paso	1	Transvista Digital Video	NA		US54	0.000	7.000	NA	\$1,728	Y	\$1,797
$\begin{gathered} \text { NCL 2003(461) } \\ \text { HES } \end{gathered}$	TX	Hidalgo	1	Install Intersection Flashing Beacon	NA		$\begin{array}{\|c\|} \hline B U \\ 83-A \\ \hline \end{array}$	11.600	11.700	NA	\$9,600	Y	\$9,984
C 22-7-24	TX	Val Verde	1	Upgrade Flashing Beacon	NA		US 90	10.533	10.633	NA	\$73	Y	\$76
STP 2003(510	TX	Zavala	1	Surfacing \& Pavement Markings	NA		US57	0.020	8.020	NA	\$4,932	Y	\$5,129
STP ( )RGS	TX	$\underset{\mathrm{R}}{\text { BREWSTE }}$	1	REPLACE RAILROAD UNDERPASS	2003		US 67	28.467	28.567	NA	\$3,508	Y	\$3,648
STP ( )RGS	TX	$\underset{\mathrm{R}}{\text { BREWSTE }}$	1	REPLACE RAILROAD NDERPASS	2003		US 67	29.714	29.721	NA	\$3,216	Y	\$3,345
Carrizo Springs Airport	TX	Dimmit	2	Engineering/design   for FY 2004   construction project	2003		NA	NA	NA	NA	\$94	Y	\$98
NH ( )M	TX	EL PASO	1	WIDEN 6 LANE TO 8 LANE AND CONSTRUCT TWO OVERPASSES	2003		US 62	13.473	14.473	NA	\$19,600	Y	\$20,384
STP 2003(204)	TX	JIM HOGG	1	RESTRIPING AND INTERSECTION IMPORVEMENTS	2003		$\begin{gathered} \text { SH } \\ 359 \end{gathered}$	5.481	6.318	NA	\$173	Y	\$180
Marfa Municipal Airport	TX	Presidio	2	Overlay TW "A", Reconstruct FW 3-21	2003		NA	NA	NA	NA	\$675	Y	\$702
STP 2002(448)	TX	$\begin{aligned} & \text { VAL } \\ & \text { VERDE } \end{aligned}$	1	MISCELLANEOUS CONTRUCTION	2003		US 90	57.277	56.881	NA	\$280	Y	\$291
$\begin{gathered} \text { STP } \\ \text { 2003(151)HES } \end{gathered}$	TX	VAL VERDE	1	HAZARD ELIMINATION AND SAFETY	2003		US 90	69.2	72.2	NA	\$100	Y	\$104
NH ( )	TX	VAL VERDE	1	MISCELLANEOUS CONSTRUCTION	2003		US 90	69.448	69.843	NA	\$350	Y	\$364
NH 2002(79)	TX	WEBB	1	UPGRADE TO A 3 LANE RURAL SECTION EACH DIRECTION	2003		IH 35	0	2.404	NA	\$11,294	Y	\$11,746


Project Number or ID	State ID	County in Which Project Resides	Project Mode 1=Hwy 2=Airport 3=Rail 4=Maritime	Description of Project	Year the Project Begins	Year the Project Become Operational	$\left\lvert\, \begin{gathered} \text { High } \\ \text { way } \\ \text { ID } \end{gathered}\right.$	Specify the mile marker where the segment begins	Specify the mile marker where the segment ends	Specify the Level of Service [A to F] for each segment during the PM peak hour before Project Completion	Cost of Project in Thousands of Constant 2002 Dollars	$\begin{array}{\|c\|} \hline \text { Fully } \\ \text { Funded } \\ ? \end{array}$	Cost of Project in Thousands of Constant 2003 Dollars
NH 2002(79)	TX	WEBB	1	CONSTAND EXTEND UNDERPASSAT CARRIERSDR	2003		IH 35	1.193	1.515	NA	\$5,721	Y	\$5,950
NH 2002(79)	TX	WEBB	1	UPGRADE TO A 3 LANE RURAL SECTION EACH DIRECTION	2003		IH 35	8.352	11.968	NA	\$14,436	Y	\$15,013
NH 2002(79)	TX	WEBB	1	CONSTRUCT UNDERPASSAT XX PROPOSED BLVD.	2003		IH 35	9.137	9.587	NA	\$6,114	Y	\$6,359
$\begin{gathered} \text { NCL } \\ \text { 2003(462)HES } \end{gathered}$	TX	WEBB	1	$\begin{gathered} \text { HAZARD } \\ \text { ELIMINATION \& } \\ \text { SAFETY FEATURES } \end{gathered}$	2003		US 59	23.4	47.6	NA	\$191	Y	\$199
NH ()	TX	ZAPATA	1	WIDEN FROM 2 LANE UNDIVIDEDTO 4 LANE DIVIDED	2003		US 83	9.904	16.24	NA	\$7,500	Y	\$7,800
NH ()	TX	ZAPATA	1	WIDEN FROM 2 LANE RURALTO 4 LANE URBAN DIVIDEDFLUSH MEDIAN	2003		US 83	16.24	17.064	NA	\$1,500	Y	\$1,560
Zapata	TX	Zapata	2	Engineer/design for FY 2004 construction project	2003		NA	NA	NA	NA	\$54	Y	\$56
$\begin{gathered} \hline \text { STP } \\ 2000(306) \mathrm{TE} \end{gathered}$	TX	$\begin{gathered} \hline \text { CULBERSO } \\ \mathrm{N} \end{gathered}$	1	RECONSTRUCTION OF SAFETY REST AREA	2004		IH 10	8.896	10.483	NA	\$1,650	Y	\$1,716
Carrizo Springs Airport	TX	Dimmit	2	Overlay \& mark, widen, reconstruct apron, grade embankement surface, install signage, etc.	2004		NA	NA	NA	NA	\$663	Y	\$690
$\begin{array}{c\|} \hline \text { STP } \\ \text { 2000(397)TE } \\ \hline \end{array}$	TX	EL PASO	1	RECONSTRUCTION OF SRA	2004		IH 10	0	0.001	NA	\$1,975	Y	\$2,054
STP 95(154)TE	TX	EL PASO	1	$\begin{gathered} \text { LOOP } 375 \\ \text { ENHANCEMENT } \end{gathered}$	2004		$\begin{aligned} & \text { LP } \\ & 375 \end{aligned}$	1.008	13.7	NA	\$2,000	Y	\$2,080
MG ( )	TX	EL PASO	1	CONSTRUCTMAIN LANES	2004		$\begin{aligned} & \hline \text { LP } \\ & 375 \end{aligned}$	5	11.95	NA	\$50,800	Y	\$52,832
MG ( )	TX	EL PASO	1	ADD TRAVEL LANE   EACH DIRECTION	2004		IH 10	11.196	16.05	NA	\$78,000	Y	\$81,120
MG 2003(587)	TX	EL PASO	1	LANDSCAPING WORK	2004		US 62	12.5	16.772	A	\$350	Y	\$364


Project Number or ID	State ID	County in Which Project Resides	Project Mode 1=Hwy 2=Airport 3=Rail 4=Maritime	Description of Project	Year the Project Begins	Year the Project Become Operational	$\begin{gathered} \text { High- } \\ \text { way } \\ \text { ID } \end{gathered}$	Specify the mile marker where the segment begins	Specify the mile marker where the segment ends	Specify the Level of Service [A to F] for each segment during the PM peak hour before Project Completion	Cost of Project in Thousands of Constant 2002 Dollars	$\begin{array}{\|c\|} \hline \text { Fully } \\ \text { Funded } \\ ? \end{array}$	Cost of Project in Thousands of Constant 2003 Dollars
IM	TX	EL PASO	1	REMOVE E-3 RAIL AND REPLACE WITH CTB	2004		IH 10	18.092	23.896	NA	\$7,025	Y	\$7,306
C 2121-468	TX	EL PASO	1	ITS SUPPORT COMMUNICATION INFRASTRUCTURE HARDWARE AND SOFTWARE MAINTENANCE	2004		IH 10	32.996	50.276	NA	\$450	Y	\$468
MG ( )	TX	HIDALGO	1	WIDEN TO 6 LANES	2004		$\begin{aligned} & \hline \text { US } \\ & 281 \end{aligned}$	7.584	3.946	NA	\$45,024	Y	\$46,825
MG ( )	TX	HIDALGO	1	WIDEN TO 6LANES	2004		US 83	42.46	47.683	C	\$54,000	Y	\$56,160
Weslaco Airport	TX	Hidalgo	2	Terminal Building Expansion	2004		NA	NA	NA	NA	\$300	Y	\$312
C 3-446	TX	JEFF DAVIS	1	REHABILITATION OF MAINLANES	2004		IH 10	0	7.005	NA	\$18,000	Y	\$18,720
IMD 35-1(73)	TX	LA SALLE	1	FOR THE CONSTRUCTION OF PERPETUAL PAVEMENT	2004		IH 35	29.765	35.484	NA	\$9,000	Y	\$9,360
Del Rio International Airport	TX	Laredo	2	Extend, Overlay, Mark, Reconstruct apron, install fence, etc.	2004		NA	NA	NA	NA	\$8,000	Y	\$8,320
C 299-3-42	TX	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { MAVERIC } \\ K \end{array} \\ \hline \end{array}$	1	UPGRADE FLASHING BEACON	2004		$\begin{aligned} & \text { US } \\ & 277 \\ & \hline \end{aligned}$	9.533	9.633	NA	\$35	Y	\$36
MG ( )	TX	VAL VERDE	1	RECONSTRUCT EXISTINGROADWAY	2004		$\begin{aligned} & \hline \text { US } \\ & 277 \end{aligned}$	1.117	12.679	NA	\$4,000	Y	\$4,160
C 23-1-70	TX	VAL VERDE	1	IMPROVE TRAFFIC SIGNALAND SAFETY LIGHTING AT INTERSECTION	2004		US 90	1.645	1.745	NA	\$90	Y	\$94
C 22-10-48	TX	VAL VERDE	1	FOR THE CONSTRUCTION OF ASPHALTIC CONCRETE PAVEMENT OVERLAY	2004		US 90	69.742	72.915	NA	\$2,368	Y	\$2,463
$\begin{gathered} \text { NCL } \\ \text { 2003(462)HES } \end{gathered}$	TX	WEBB	1	HAZARD ELIMINATION \& SAFETY FEATURES	2004		US 59	0	23.4	NA	\$463	Y	\$482


Project   Number or ID	State ID	County in Which Project Resides	Project Mode 1=Hwy 2=Airport 3=aiil 4=Maritime	Description of Project	Year the Project Begins	Year the Project Become Operational	$\left\lvert\, \begin{array}{\|l\|l\|} \hline \text { High- } \\ \text { way } \\ \text { ID } \end{array}\right.$	Specify the mile marker where the segment begins	Specify the mile marker where the segment ends	Specify the   Level of Service   [A to F] for each   segment during   the PM peak   hur before   Project   Completion	Cost of Project in Thousands of Constant 2002 Dollars		Cost of Project in Thousands of Constant 2003 Dollars
NH ( )	TX	WEBB	1	$\begin{aligned} & \text { TRAFFIC } \\ & \text { MANAGEMENT } \\ & \text { SYSTEM } \end{aligned}$	2004		IH 35	1.272	7.313	NA	\$2,000	Y	\$2,080
C 86-1-56	TX	WEBB	1	IMPROVE TRAFFIC SIGNAL	2004		US 83	1.45	1.55	NA	\$150	Y	\$156
C 38-1-53	TX	WEBB	1	IMPROVE TRAFFIC SIGNAL	2004		US 83	1.992	2.092	NA	\$90	Y	\$94
C 38-1-52	TX	WEBB	1	IMPROVE TRAFFIC SIGNAL	2004		US 83	2.309	2.409	C-D	\$90	Y	\$94
C 38-1-55	TX	WEBB	1	IMPROVE TRAFFIC SIGNAL	2004		US 83	2.706	2.806	NA	\$85	Y	\$88
C 38-1-54	TX	WEBB	1	IMPROVE TRAFFIC SIGNAL	2004		US 83	3.036	3.136	NA	\$95	Y	\$99
C 38-1-51	TX	WEBB	1	IMPROVE TRAFFIC SIGNALAND INTERCONNECT SIGNALS	2004		US 83	3.9	5.7	A	\$65	Y	\$68
NH ( )	TX	WEBB	1	CONSTRUCTURBAN SECTION OF ROADWAY \& TRAFFIC MANAGEMENTSYS	2004		US 59	45.082	42.082	NA	\$19,590	Y	\$20,374
Zapata Airport	TX	Zapata	2	Rehab RW, Mark RW, Rehab turnaroundsapron - stub, Install signage, windcones etc.	2004		NA	NA	NA	NA	\$230	Y	\$239
C 37-2-44	TX	ZAVALA	1	RECONSTRUCT EXISTING ROADWAY	2004		US 83	6.038	10.829	NA	\$878	Y	\$913
C 37-3-66	TX	ZAVALA	1	RECONSTRUCT EXISTINGROADWAY	2004		US 83	38.538	41.725	NA	\$646	Y	\$672
C 75-1-20	TX	BREWSTE R	1	ADDITION OF PASSING LANES AND CULVERT WIDENING	2005		US 67	0	19.6	NA	\$8,000	Y	\$8,320
MG ()	TX	CAMERON	1	WIDEN TO 6 LANES	2005		US 83	1.69	7.78	NA	\$75,000	Y	\$78,000
Carrizo Springs Airport	TX	Dimmit	2	Rehab RW, Mark RW, Rehab turnarounds-apron-stub etc.	2005		NA	NA	NA	NA	\$237	Y	\$246


Project Number or ID	State ID	County in Which Project Resides	Project Mode 1=Hwy 2=Airport 3=Rail $4=$ Maritime	Description of Project	Year the Project Begins	Year the Project Become Operational	$\begin{array}{\|l\|} \hline \text { High } \\ \text { way } \\ \text { ID } \end{array}$	Specify the mile marker where the segment begins	Specify the mile marker where the segment ends	Specify the Level of Service [A to F] for each segment during the PM peak hour before Project Completion	Cost of Project in Thousands of Constant 2002 Dollars	Fully Funded ?	Cost of Project in Thousands of Constant 2003 Dollars
C 2121-1-51	TX	EL PASO	1	WIDENING TWO-WAY SERVICE ROAD	2005		IH 10	0	0.218	NA	\$250	Y	\$260
C 374-2-72	TX	EL PASO	1	STORM SEWER CONSTRUCTION	2005		US 62	26.605	32.273	NA	\$1,000	Y	\$1,040
Presidio Lely International Airport	TX	El Paso	2	Rehab RW, Mark RW, and Rehab aprong \& stub	2005		NA	NA	NA	NA	\$220	Y	\$229
C 299-2-26	TX	KINNEY	1	RECONSTRUCT EXISTING ROADWAY	2005		$\begin{aligned} & \text { US } \\ & 277 \end{aligned}$	0.049	7.463	NA	\$3,707	Y	\$3,855
STP ( )	TX	LA SALLE	1	CONSTRUCT EXITAND ENTRANCE RAMPSTO IH 35 AND REALIGN FRONTAGE ROADS	2005		IH 35	1.5	1.9	NA	\$450	Y	\$468
$\begin{gathered} \text { STP } \\ 2000(296) \mathrm{TE} \end{gathered}$	TX	LA SALLE	1	CONSTRUCTION OF A NEW SAFETY REST AREA	2005		IH 35	13.12	13.548	NA	\$2,438	Y	\$2,536
NH	TX	$\begin{gathered} \text { MAVERIC } \\ K \end{gathered}$	1	REPLACE BRIDGEAND APPROACHES	2005		$\begin{aligned} & \text { US } \\ & 277 \end{aligned}$	11.376	11.398	NA	\$800	Y	\$832
C 299-3-44	TX	$\begin{gathered} \hline \text { MAVERIC } \\ K \end{gathered}$	1	REHABILITATION OF EXISTING ROADWAY	2005		$\begin{aligned} & \text { US } \\ & 277 \end{aligned}$	11.398	16.632	NA	\$2,381	Y	\$2,476
C 20-8-39	TX	PRESIDIO	1	ADDITION OFPASSING LANESAND CONSTRUCTION OF PARKING AREA	2005		US 67	54.1	40	NA	\$6,000	Y	\$6,240
STP ( )	TX	WEBB	1	REALLIGN AND GRADE SEPARATE INTERSECTION	2005		US 83	1.092	1.743	NA	\$5,000	Y	\$5,200
STP ( )HES	TX	WEBB	1	INSTALLATION OF RAISED MEDIAN	2005		US 83	1.2	3.3	NA	\$800	Y	\$832
STP 2001(543)	TX	WEBB	1	RECONSTRUCT ROADWAY	2005		US 83	1.797	3.297	NA	\$3,500	Y	\$3,640
STP ( )	TX	WEBB	1	$\begin{aligned} & \text { REALIGN } \\ & \text { INTERSECTION } \end{aligned}$	2005		$\begin{gathered} \hline \text { SH } \\ 359 \\ \hline \end{gathered}$	2.165	2.741	NA	\$5,000	Y	\$5,200


$\begin{array}{\|c\|} \hline \text { Project } \\ \text { Number or ID } \end{array}$	State ID	County in Which Project Resides	Project Mode 1=Hwy 2=Airport 3=Rail 4=Maritime	Description of Project	Year the Project Begins	Year the Project Become Operational	$\left\lvert\, \begin{gathered} \text { High- } \\ \text { way } \\ \text { ID } \end{gathered}\right.$	Specify the mile marker where the segment begins	Specify   the mile   marker   where   the   segment   ends	Specify the Level of Service [A to F] for each segment during the PM peak hour before Project Completion	Cost of Project in Thousands of Constant 2002 Dollars	$\begin{array}{\|c\|} \hline \text { Fully } \\ \text { Funded } \\ ? \end{array}$	Cost of Project in Thousands of Constant 2003 Dollars
C 18-6-150	TX	WEBB	1	ADD RIGHT TURN LANES	2005		IH 35	3.518	3.58	NA	\$500	Y	\$520
MG ()	TX	WILLACY	1	EXPAND TO FOUR   LANEFREEWAY	2005		US 77	15.265	20.509	NA	\$14,000	Y	\$14,560
STP ( )	TX	ZAPATA	1	WIDEN FROM 2 LANE TO 4 LANE UNDIVIDED	2005		US 83	31.08	28.486	NA	\$2,750	Y	\$2,860
BR ( )	TX	ZAPATA	1	WIDEN BRIDGE AND REPAIRAPRROACHES	2005		US 83	32.652	33.059	NA	\$4,000	Y	\$4,160
Texas Unified Transportation Program - Priority 2													
IM ( )	TX	JEFF DAVIS	1	REHABILTTATION OF MAINLANES	2004		IH 10	0	7.005	NA	\$18,000	N	\$18,720
IMD 35-1(73)	TX	LA SALLE	1	FOR THE CONSTRUCTION OF PERPETUAL PAVEMENT	2004		IH 35	29.765	35.484	NA	\$9,000	$N$	\$9,360
MG ( )	TX	VAL VERDE	1	RECONSTRUCT EXISTING ROADWAY	2004		$\begin{aligned} & \hline \text { US } \\ & 277 \end{aligned}$	1.117	12.679	NA	\$4,000	N	\$4,160
MG ( )	TX	HIDALGO	1	WIDEN TO 6 LANES	2004		US 83	42.46	47.683	NA	\$54,000	N	\$56,160
STP ( )	TX	LA SALLE	1	CONSTRUCT EXITAND ENTRANCE RAMPSTO IH 35 AND REALIGN FRONTAGE ROADS	2005		IH 35	1.5	1.9	NA	\$450	$N$	\$468
BR ( )	TX	ZAPATA	1	WIDEN BRIDGE AND REPAIRAPRROACHES	2005		US 83	32.652	33.059	NA	\$4,000	N	\$4,160
MG ()	TX	CAMERON	1	WIDEN TO 6 LANES	2005		US 83	1.69	7.78	NA	\$75,000	N	\$78,000
MG ()	TX	WILLACY	1	EXPAND TO FOUR LANE FREEWAY	2005		US 77	15.265	20.509	NA	\$14,000	N	\$14,560

Note: Texas cost data provided in 2002 dollars. These are converted to 2003 dollars using a $4.0 \%$ inflation rate provided by the BINSTechnical Committee representative.


## U.S. PORTS OF ENTRY

Table 11
Capital Projects in US Land Ports of Entry

Capital Projects in US Land Ports of Entry		
	POE	Project Details
1	San Ysidro	
	Plans	San Ysidro / Virginia Avenue Expansion Project
	Type	Increase throughput - expand up to 49 inbound lanes; Separate southbound traffic.
	Begin Date	2006 - take about 4 years
	End Date	About 2010
	Other	Environmental Impact Statement currently underway
2	Otay M esa	
	Plans	None
	Type	
	Begin Date	
	End Date	
	Other	Some ideas have been discussed to add inbound truck lanes.
3	Tecate	
	Plans	Tecate POE Expansion
	Type	Expand port, separate Passenger Vehicles from trucks. Have one inspection lane for trucks and two for passenger vehicles
	Begin Date	2003 - take about 24 months
	End Date	End FY 2005
	Other	
4	Calexico East	
	Plans	None
	Type	
	Begin Date	
	End Date	
	Other	
5	Calexico Mexicali	
	Plans	Long term expansion from 10 inbound lanes up to 16 inbound lanes.
	Type	Basically replace entire port
	Begin Date	2008, take 3 to 4 years.
	End Date	2012
	Other	
6	Andrade	
	Plans	To improve the facility making it more efficient and accessible.
	Type	Replace the current facility providing up to 4 primary lanes and add a small truck dock.
	Begin Date	2007 - will take about 18 months


	End Date	2008 or 2009
	Other	No expectation of commercial growth / Basically the facility will be replaced
Capital Projects in US Land Ports of Entry (cont.)		
7	San Luis	
	Plans	Construct a new facility to accommodate commercial traffic only.
	Type	Modernize and expand the old facility - improve internal efficiency The project will be done in stages:
	Begin Date	2006 to 2008 to install the truck crossing which is referred to as San Luisll
	End Date	2008 to 2010 for the remaining renovation and expansion of noncommercial facilities at San Luis I
	Other	
8	Lukeville	
	Plans	None
	Type	
	Begin Date	
	End Date	
	Other	
9	Sasabe	
	Plans	None
	Type	
	Begin Date	
	End Date	
	Other	
10	Nogales DeConcini	
	Plans	None
	Type	
	Begin Date	
	End Date	
	Other	
11	Nogales M ariposa	
	Plans	A Feasibility Study may be required
	Type	There is a local proposal to evaluate the viability of separating trucks and passenger vehicles by constructing a new noncommercial facility nearby
	Begin Date	Nothing concrete
	End Date	
	Other	
12	Naco	
	Plans	None
	Type	
	Begin Date	
	End Date	
	Other	


Capital Projects in US Land Ports of Entry (cont.)		
13	Douglas	
	Plans	A Feasibility Study may be required
	Type	Local discussions about separating truck traffic from passenger vehicles by constructing a new commercial facility nearby
	Begin Date	Nothing concrete.
	End Date	
	Other	
14	Antelope Wells	
	Plans	None
	Type	
	Begin Date	
	End Date	
	Other	
15	Columbus	
	Plans	Separate truck and passenger vehicle traffic.
	Type	
	Begin Date	2004-take about 1 year
	End Date	2005
	Other	
16	Santa Teresa	
	Plans	None
	Type	
	Begin Date	
	End Date	
	Other	
17	Santa Fe	
17	Plans	An expansion - to add up to four [4] primary inbound inspection lanes for passenger vehicles by relocating the Headhouse and adding admin space
	Type	
	Begin Date	2005 and will take about 2 years to build
	End Date	2007
	Other	
18	Stanton	
	Plans	None
	Type	
	Begin Date	
	End Date	
	Other	


Capital Projects in US Land Ports of Entry (cont.)		
19	Bridge of the Americas	
	Plans	Expansion almost finished.
	Type	Adding four [4] inbound primary inspection lanes
	Begin Date	
	End Date	Year end 2003
	Other	When complete, will increase inbound inspection capacity by $40 \%$
20	Y sleta	
	Plans	Add one dedicated commuter lane [SENTRI].
	Type	City needs to re-stripe bridge and GSA installs necessary equipment [when funded by the SENTRI program].
	Begin Date	
	End Date	Could be operational by 2004 depending on funding availability
	Other	Other improvements are considered for 2007 to improve internal efficiency.
21	Fabens	
	Plans	In process of reviewing Presidential permit application to construct new bridge and border station. The current bridge is old and the project would also add lanes. Bridge is 20 miles from El Paso.
	Type	
	Begin Date	Pending Presidential Permit issuance and coordination with Mexico
	End Date	Pending Presidential Permit issuance and coordination with Mexico
	Other	This is being promoted by El Paso County; still needs Mexican govt. approval.
22	Fort Hancock	
	Plans	New Facility almost complete. Thisfacility is 60 miles from El Paso and is mainly used as a crossing for farm workers and local traffic.
	Type	
	Begin Date	
	End Date	Open in 2003
	Other	
23	Presidio	
	Plans	None
	Type	
	Begin Date	
	End Date	
	Other	
24	Del Rio [Amistad Dam]	
	Plans	None
	Type	
	Begin Date	
	End Date	
	Other	


Capital Projects in US Land Ports of Entry (cont.)		
25	Del Rio	
	Plans	In the Design Phase - which will last 2003 to 2004. The idea is to increase throughput and improve operational capability. Details pending design documents.
	Type	
	Begin Date	
	End Date	
	Other	
26	Eagle Pass I	
	Plans	None
	Type	
	Begin Date	
	End Date	
	Other	
27	Eagle Pass II	
	Plans	Project design underway and will continue through 2004. The project will increase throughput and improve operational capability. Details pending design documents.
	Type	
	Begin Date	
	End Date	
	Other	
2	Laredo III-Columbia	
	Plans	None
	Type	
	Begin Date	
	End Date	
	Other	
29	Laredo II	
29	Plans	None
	Type	
	Begin Date	
	End Date	
	Other	
30	Laredo I	
	Plans	Increase pedestrian crossing capability.
	Type	One northbound vehicle lane would be converted for additional pedestrian processing space, while one of the current southbound vehicle lanes will be converted for northbound vehicle processing.
	Begin Date	A project manager has been assigned
	End Date	End of 2004
	Other	This port handles all of the local pedestrian traffic between Laredo \& Nuevo Laredo.


Capital Projects in US Land Ports of Entry (cont.)		
31	Falcon Heights	
	Plans	Replace the old US Customs facility
	Type	Capacity would not be increased.
	Begin Date	2004 - take 12 to 18 months
	End Date	2005
	Other	
32	Roma	
	Plans	None
	Type	
	Begin Date	
	End Date	
	Other	
33	Rio Grande City	
	Plans	None
	Type	
	Begin Date	
	End Date	
	Other	
34	Los Ebanos	
	Plans	
	Type	None
	Begin Date	
	End Date	
35	Other	
	Hidalgo	
	Plans	
	Type	
	Begin Date	
	End Date	
36	Other	
	Pharr - Reynosa III	
	Plans	Type
	Begin Date	
	End Date	
	Other	


Capital Projects in US Land Ports of Entry (cont.)		
37	Progreso	
	Plans	Rebuild facility - the owner of the bridge and border station plansto   expand.
	Type	GSA and the Federal Inspection Service agencies are working with the lessor   to develop a master plan for this expansion.
	Begin Date	
	End Date	
	Other	The process is ongoing.
38	Brow nsville - Los Indios	
	Plans	None
	Type	
	Begin Date	
	End Date	
	Other	
39	Brow nsville - B\&M	
	Plans	None
	Type	
	Begin Date	
	End Date	
	Other	
40	Brow nsville - Gatew ay	
	Plans	None
	Type	
	Begin Date	
	End Date	
	Other	
41	Brow nsville - Veterans	
	Plans	None
	Type	
	Begin Date	
	End Date	
	Other	

## MEXICAN PORTS OF ENTRY

Table 12
Capital Projects in Mexican Land Ports of Entry

| Capital Projects in M exican Land Ports of Entry |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| NOM BRE <br> DEL <br> PROYECTO | ESTADO | M UNICIPIO | VOCACIÓN | DESCRIPCIÓN | SITUACIÓN |


NOM BRE DEL PROYECTO	ESTADO	M UNICIPIO	VOCACIÓN	DESCRIPCIÓN	SITUA CIÓN
GUADALUPE BRAVO (TORNILLO)	Chihuahua	Guadalupe	P.F. MIXTO	AMPLIACIÓN Y SUSTITUCION	Etapa Conceptual
OJINAGA	Chihuahua	Ojinaga	P.F. MIXTO	AMPLIACIÓN	Etapa Conceptual
LA LINDA	Coahuila	Acuña	P.F. TURISTICO	REAPERTURA	Propuesta
CIUDAD ACUÑA	Coahuila	Acuña	P.F. MIXTO	REMODELACIÓN Y AMPLIACIÓN	Propuesta
COLOMBIA (SOLIDARIDAD)	Nuevo León	Colombia	P.F. MIXTO	AMPLIACIÓN	Proyecto Nuevo cruce FFCC
NUEVO LAREDO I	Tamaulipas	Nuevo Laredo	P.F. TURISTICO	REMODELACIÓN	Se cuenta con Plan Maestro, que requiere actualización
NUEVO   LAREDO II	Tamaulipas	Nuevo Laredo	P.F. TURISTICO	REMODELAOÓN	Se cuenta con Plan Maestro, que requiere actualización
NUEVO LAREDO III	Tamaulipas	Nuevo Laredo	P.F. COMERCIAL	REMODELACIÓN	Propuesta para Reordenamiento.
NUEVO   LAREDO IV	Tamaulipas	Nuevo Laredo	P.F. TURISTICO	NUEVO	Etapa Conceptual
MIGUEL ALEMAN	Tamaulipas	Miguel   Aleman	P.F. MIXTO	AMPLIACIÓN	Etapa Conceptual
CAMARGO	Tamaulipas	Camargo	P.F. MIXTO	AMPLIACIÓN	Se cuenta con Anteproyecto, se requiere donación de terrenos a la Federación
GUSTAVO DIAZORDAZ ( EL CHALAN )	Tamaulipas	Gustavo Díaz Ordaz Ordaz	P.F. TURISTICO	REMODELACIÓN	Propuesta
REYNOSA IY II	Tamaulipas	Reynosa	P.F. TURISTICO	REMODELACIÓN	Se esta realizando Proyecto por Aduanas, también se cuenta con Propuesta para Línea SENTRI
REYNOSA III (PHARR)	Tamaulipas	Reynosa	P.F. MIXTO	REMODELACIÓN	Se esta realizando Proyecto por Aduanas
REYNOSA IV ANZALDUAS	Tamaulipas	Reynosa	P.F. MIXTO	NUEVO	Se cuenta con Anteproyecto de Promotores
NUEVO PROGRESO	Tamaulipas	Río Bravo	P.F. MIXTO	AMPLIACIÓN	Se cuenta con Anteproyecto, se requiere donación de terrenos a la Federación
LUCIO BLANCO (TLC)	Tamaulipas	Matamoros	P.F. MIXTO	REMODELACIÓN	Se cuenta con Anteproyecto para Recintos Fiscalizados
MATAMOROS (PUENTE VIEJO, B\&M)	Tamaulipas	Matamoros	P.F. TURISTICO	REMODELACIÓN	Se cuenta con Propuesta para Línea SENTRI

## APPENDIX 10: STATISTICAL TABLES

## STATISTICAL TABLES: CORRIDOR DATA

## STATISTICAL TABLES: PROJ ECT DATA

State Corridors with Key Information														
Higher LOS Letter Implies Lower Number [ $A=1, B=2, C=3$, etc.]														
	Number	Corridor	LOS - 2000		LOS - 2020		Change in LOS		AADT		Change in AADT		Highway Length	
State	Corridors	Names	Letter	Number	Letter	Number	Number	Percent	2000	2020	Number	Percent	miles	km
Arizona	1		No Level of Service Information Provided						24,026	30,049	6,023	25.1\%	63.1	101.5
Baja CA	12	MX-1D	A	1.00	A	1.81	0.81	80.6\%	5,100	9,211	4,111	80.6\%	22.0	35.4
All changes based		MX-1	D	4.00	F1	7.22	3.22	80.6\%	10,600	19,145	8,545	80.6\%	16.1	25.9
on 3.0\% per year		MX-2D	A	1.00	A	1.81	0.81	80.6\%	5,700	10,295	4,595	80.6\%	14.1	22.7
		MX-2	C	3.00	E	5.42	2.42	80.6\%	4,600	8,308	3,708	80.6\%	28.0	45.0
		MX-2	C	3.00	E	5.42	2.42	80.6\%	6,500	11,740	5,240	80.6\%	7.5	12.0
		MX-2	B	2.00	C	3.61	1.61	80.6\%	7,000	12,643	5,643	80.6\%	4.8	7.8
		MX-2	C	3.00	E	5.42	2.42	80.6\%	5,000	9,031	4,031	80.6\%	31.4	50.6
		MX-3	C	3.00	E	5.42	2.42	80.6\%	4,200	7,586	3,386	80.6\%	65.0	104.5
		MX-5	B	2.00	C	3.61	1.61	80.6\%	4,600	8,308	3,708	80.6\%	62.2	100.0
		BCN-2	B	2.00	C	3.61	1.61	80.6\%	2,100	3,793	1,693	80.6\%	32.1	51.7
		via Rapida Oriente	D	4.00	F1	7.22	3.22	80.6\%	40,000	72,244	32,244	80.6\%	4.9	7.9
		Bellas Artes Blvd	D	4.00	F1	7.22	3.22	80.6\%	20,000	36,122	16,122	80.6\%	10.1	16.3
California	2	San Diego	C	3.92	D	4.22	0.29	7.5\%	719,972	1,008,392	288,420	40.1\%	292.4	470.5
		Imperial	A	1.33	A	1.87	0.54	40.5\%	92,755	186,422	93,667	101.0\%	377.8	607.9
Chihuahua	6	MX-2	A	1.71	C	3.00	1.29	75.1\%	2,326	3,845	1,519	65.3\%	178.6	287.4
		MX-10	B	2.90	C	3.85	0.95	32.8\%	2,258	3,732	1,474	65.3\%	168.1	270.5
		MX-16	A	1.68	A	1.86	0.17	10.2\%	2,625	4,338	1,713	65.3\%	316.2	508.8
		MX-45	A	1.00	B	2.68	1.68	167.6\%	6,937	11,466	4,529	65.3\%	360.3	579.8
		Santa Teresa-Sam	A	1.00	A	1.00	0.00	0.0\%	400	730	330	82.5\%	17.7	28.5
		Guadaloupe-Sam	A	1.00	B	2.00	1.00	100.0\%	1,500	2,480	980	65.3\%	21.6	34.7
Coahuila	4	Piedras Negras	No Level of Service Information Provided						1,521	4,035	2,514	165.3\%	136.3	219.3
		Morelos Cd. Acuna	No Level of Service Information Provided						1,916	5,015	3,099	161.7\%	64.6	104.0
		Sabinas P Negras	No Level of Service Information Provided						6,050	16,028	9,978	164.9\%	82.7	133.0
		El Melon La Linda	No Level of Service Information Provided						No Information Provided					
New Mexico	3	East-West	A	1.37	A	1.82	0.45	32.5\%	26,450	41,927	15,477	58.5\%	522.7	841.0
		North-South	A	1.00	A	1.00	0.00	0.0\%	7,964	12,378	4,414	55.4\%	60.0	96.5
		Midwest	A	1.08	A	1.04	-0.04	-3.6\%	15,340	31,759	16,419	107.0\%	104.1	167.5
Nuevo Leon	1	Monterrey-Col	C	3.62	E	5.62	2.00	55.3\%	778	1,691	913	117.4\%	73.3	118.0
Sonora	1		No Level of Service Information Provided						11,520	20,806	9,286	80.6\%	487.3	784.1
Tamaulipas	6	Nuevo Laredo	B	2.20	A	1.70	-0.49	-22.5\%	8,855	17,999	9,144	103.3\%	215.5	346.7
		Reynosa	B	2.48	A	1.32	-1.17	-47.0\%	24,372	66,955	42,583	174.7\%	252.8	406.8
		Matamoros	B	2.13	A	1.72	-0.41	-19.3\%	10,638	22,803	12,165	114.4\%	306.1	492.5
		Miguel Alemain	B	2.41	A	1.84	-0.57	-23.8\%	9,904	21,789	11,885	120.0\%	106.2	170.8
		Camargo	B	2.76	A	1.21	-1.56	-56.3\%	7,480	15,620	8,140	108.8\%	72.8	117.1
		Nuevo Progreso	C	3.36	B	2.00	-1.36	-40.4\%	8,290	20,147	11,857	143.0\%	17.4	28.0
Texas	6	Ports to Plains	No Level of Service Information Provided						16,663	30,794	14,131	84.8\%	194.3	312.6
		La Entrada	No Level of Service Information Provided						1,717	2,933	1,216	70.8\%	100.7	162.0
		IH-10	No Level of Service Information Provided						137,541	222,719	85,178	61.9\%	206.4	332.1
		IH-35	No Level of Service Information Provided						20,129	39,665	19,536	97.1\%	256.2	412.2
		IH-69	No Level of Service Information Provided						49,514	84,693	35,179	71.0\%	262.8	422.8
		US-83	No Level of Service Information Provided						20,475	36,916	16,441	80.3\%	188.1	302.7

State Corridors with Key Information

State Corridors w ith Key Information															
Higher LOS Letter Implies Lower Number [ $A=1, B=2, C=3$, etc.]															
									Change		ADT	Change	AADT	Highway	ength
Statistics									in LOS	2000	2020	2000 to	2020	miles	km
Sum	42	Total number of corridors													
Maximum	12	Corridors per state						Maximum:	167.6\%	719,972	1,008,392	288,420	174.7\%	523	841
Minimum	1	Corridors per state						Minimum:	-56.3\%	400	730	330	25.1\%	5	8
Average	4.2	Corridors per state						Average:	42.5\%	33,056	53,087	20,030	89.8\%	142	228
Median	3.5	Corridors per state						Median:	65.2\%	7,480	15,620	6,023	80.6\%	83	133
	10	Number States													
	4	States that provided no LOS information: Arizona, Coahuila, Sonora \& Texas													
	5	States with LOS increasing or getting worse: Baja California, California, Chihuahua, New Mexico and Nuevo Leon.													
	1	State with no change in LOS: Chihuahua \& New M exico													
	1	State with LOS decreasing or getting better: Tamaulipas \& New Mexico													
					-	-									
Note:	LOS is Level of Service and is a measure used to evaluate transportation systems quality in terms of motor vehicle movement.														
	AADT is Average Annual Daily Traffic														
	1 Mile = 1,609 meters														
Source:															
	The Corridor Evaluations conducted by SourcePoint calculates weighted average LOS and AADT for each corridor based on the information sent by the														
	BINS Technical representatives.														


ALL DATA RESULTS											
					Change	AADT		Change in AADT		Highway Length	
Statistics					in LOS	2000	2020	2000 to 2020		miles	km
All Border-States											
Sum	42	Total number of corridors									
Maximum	12	Corridors per state		Maximum:	167.6\%	719,972	1,008,392	288,420	174.7\%	523	841
Minimum	1	Corridors per state		M inimum:	-56.3\%	400	730	330	25.1\%	5	8
Average	4.2	Corridors per state		Average:	42.5\%	33,056	53,087	20,030	89.8\%	142	228
Median	3.5	Corridors per state		Median:	65.2\%	7,480	15,620	6,023	80.6\%	83	133
United States											
Sum	12	Total number of corridors									
Maximum	6	Corridors per state		Maximum:	40.5\%	719,972	1,008,392	288,420	107.0\%	523	841
Minimum	1	Corridors per state		Minimum:	-3.6\%	1,717	2,933	1,216	25.1\%	60	97
Average	3.0	Corridors per state		Average:	15.4\%	94,379	144,054	49,675	71.1\%	219	352
Median	2.5	Corridors per state		Median:	7.5\%	22,251	38,291	16,430	70.9\%	200	322
Mexico											
Sum	30	Total number of corridors									
Maximum	12	Corridors per state		Maximum:	167.6\%	40,000	72,244	42,583	174.7\%	487	784
Minimum	1	Corridors per state		Minimum:	-56.3\%	400	730	330	65.3\%	5	8
Average	5.0	Corridors per state		Average:	48.0\%	7,682	15,445	7,763	97.6\%	110	176
Median	5	Corridors per state		Median:	80.6\%	5,700	10,295	4,529	80.6\%	65	104


LEGEND \& BRIEF ANALYSIS (HWY ONLY)						
Transportation HWY Projects [288 Total Projects]	United States	Mexico				
	2003 \$	2003 Pesos				
Total Cost Project Dollar/Peso Amount	\$14,302,658,965	9,964,900,000	Project Cost Summary, By State ${ }^{1}$			
Total Cost, Fully Funded Project Dollar/Peso Amount	\$3,804,575,035	1,743,300,000		(All Modes)		
Total Cost, Not Funded Project Dollar/Peso Amount	\$10,498,083,930	8,221,600,000				
Minimum(All Modes) Project Dollar/Peso Amount	\$36,400	5,000,000	Arizona		Nuevo León	[NO DATA]
Maximum(All Modes) Project Dollar/Peso Amount	\$447,503,382	425,000,000	Minimum	\$42,601	Minimum	
Median (All Modes) Project Dollar/Peso Amount	\$3,783,520	29,300,000	Maximum	\$20,767,968	Maximum	
Median $\quad \$ 319,507$ Median						
			Baja California		New Mexico	
HWY Projects by State	Number	\%	Minimum	5,000,000	Minimum	\$3,000,000
Arizona	21	7\%	Maximum	1,500,000,000	Maximum	\$6,000,000
Baja California	17	6\%	Median	25,000,000	Median	\$4,500,000
California	103	36\%				
Chihuahua	4	1\%	California		Sonora	
Coahuila	9	3\%	Minimum	\$300,000	Minimum	12,600,000
New Mexico	6	2\%	Maximum	\$900,000,000	Maximum	35,600,000
Nuevo León	1	0\%	Median	\$70,000,000	Median	29,050,000
Sonora	4	1\%				
Tamaulipas	16	6\%	Coahuila		Tamaulipas	
Texas	107	37\%	Minimum	3,100,000	Minimum	15,000,000
Total	288	100\%	Maximum	375,000,000	Maximum	800,000,000
			Median	131,000,000	Median	141,000,000
POE Projects by Country	Number	\%				
Number of US POE Projects	19	35\%	Chihuahua		Texas	
Number of Mexican POE Projects	35	65\%	Minimum	30,000,000	Minimum	\$36,400
Total	54	100\%	Maximum	188,000,000	Maximum	\$85,882,160
			Median	142,500,000	Median	\$3,344,640
POE Projects by US State	Number	\%				
Arizona	3	21.1\%	LEG			
California	4	15.8\%			Notes:	
New Mexico	1	5.3\%	States:	Counties:		
Texas	11	57.9\%	CA: California	SD: San Diego		U.S. Dollars
Total	19	100.0\%	AZ: Arizona	IMP: Imperial		
			NM: New Mexico	PM : Pima		Mexican Pesos
POE Projects by Mexican State	Number	\%	TX: Texas	PN: Pinal		
Baja California	8	22.9\%	BC: Baja California	MO: Mohave		
Chihuahua	7	20.0\%	SO: Sonora	MA: Maricopa		
Coahuila	2	5.7\%	Cl: Chihuahua	YV: Yavapai		
Nuevo León	1	2.9\%	CO: Coahuila			
Sonora	4	11.4\%	NL: Nuevo León			
Tamaulipas	13	37.1\%	TM: Tamaulipas			
Total	35	100.0\%				



US and Mexico: Number of Projects by Mode, by Level of Funding												
	Number of Projects By Funding Level				Distribution of Projects By Mode				Distribution of Funding Level by Mode			
	Fully Funded	Not Fully Funded			Fully	Not Fully Funded			Fully Funded	Not Fully Funded		Total
		Has Cost	No Cost	Total	Funded	Has Cost	No Cost	Total		Has Cost	No Cost	
Air	9	1	3	13	5\%		17\%	4.2\%	69\%		23\%	92\%
Highway	161	114	13	288	92\%	96\%	72\%	92.3\%	56\%	40\%	5\%	100\%
Maritime	0	0	0	0								
Rail	5	4	2	11	3\%	3\%	11\%	3.5\%	45\%	36\%	18\%	100\%
Intermodal	0	0	0	0								
Total	175	119	18	312	100\%	99\%	100\%	100\%	56\%	38\%	6\%	100\%
US and M exico: Value of Projects by Mode, by Level of Funding												
Constant 2003 Dollars												
	Value of Projects By Funding Level				Distribution of Value By Mode				Distribution of Funding Level by Mode			
	Fully	Not Fully Funded			Fully	Not Fully Funded			Fully	Not Fully Funded		
	Funded	Has Cost	No Cost	Total	Funded	Has Cost	No Cost	Total	Funded	Has Cost	No Cost	Total
Air	10,891,920	5,904,762	-	16,796,682	0.2\%			0.1\%	65\%			65\%
Highway	3,970,603,607	11,281,093,454	-	15,251,697,060	82.8\%	98.9\%		94.1\%	26\%	74\%		100\%
Maritime	-	-	-	-								
Rail	812,598,835	121,074,147	-	933,672,983	16.95\%	1.1\%		5.8\%	87\%	13\%		100\%
Intermodal	-	- -	-	-								
Total	4,794,094,362	11,408,072,363	-	16,202,166,725	100\%	100\%		100\%	30\%	70\%		100\%
Notes:	In the United States these totals include projects in Arizona, California, New Mexico and Texas.											
	In Mexico these totals include projects in Baja California, Chihuahua, Coahuila, Nuevo Leon, Sonora and Tamaulipas.											
	For Arizona, California and Texas, the original cost data were not in $2003 \$$. Factors to convert the data to $2003 \$$ were obtained from each of the BINS Technical Committee representatives.											
	Mexican Pesos are converted to US dollars using the exchange rate 1 US $\$=10.5$ Mexican pesos											
Source:	BINSTechnical Representatives for each state											



Arizona: Number of Projects by Mode, by Level of Funding												
	Number of Projects By Funding Level				Distribution of Projects By Mode				Distribution of Funding Level by Mode			
	Fully	Not Fully Funded			Fully	Not Fully Funded			Fully	Not Fully Funded		
	Funded	Has Cost	No Cost	Total	Funded	Has Cost	No Cost	Total	Funded	Has Cost	No Cost	Total
Air												
Highway	13		8	21	100\%		100\%	100\%	62\%		38\%	100\%
Maritime												
Rail												
Intermodal												
Total	13	0	8	21	100\%		100\%	100\%	62\%		38\%	100\%
Arizona: Value of Projects by Mode, by Level of Funding												
in Thousands of Constant 2003 Dollars												
	Value of Projects By Funding Level				Distribution of Value By Mode				Distribution of Funding Level by Mode			
	Fully	Not Fully Funded			Fully	Not Fully Funded			Fully	Not Fully Funded		
	Funded	Has Cost	No Cost	Total	Funded	Has Cost	No Cost	Total	Funded	Has Cost	No Cost	Total
Air				-								
Highway	38,796			38,796	100\%			100\%	100\%			100\%
Maritime				-								
Rail				-								
Intermodal				-								
Total	38,796	-	-	38,796	100\%			100\%	100\%			100\%
Notes:	All projects with no cost estimates are not fully funded.											
	Cost data provided in 2001 \$ and converted to 2003 \$ using an inflation rate of 3.2\% per year.											
Source:	Arizona BINS Technical Representative											


California: Number of Projects by Mode, by Level of Funding												
	Number of Projects By Funding Level				Distribution of Projects By Mode				Distribution of Funding Level by Mode			
	Fully	Not Fully Funded			Fully	Not Fully Funded			Fully Funded	Not Fully Funded		Total
	Funded	Has Cost	No Cost	Total	Funded	Has Cost	No Cost	Total		Has Cost	No Cost	
Air												
Highway	22	81		103	85\%	96\%		94\%	21\%	79\%	0\%	100\%
Maritime												
Rail	4	3		7	15\%	4\%						
Intermodal												
Total	26	84		110	100\%	100\%	0\%	94\%	24\%	76\%	0\%	100\%
California: Value of Projects by Mode, by Level of Funding												
in Thousands of Constant 2003 Dollars												
	Value of Projects By Funding Level				Distribution of Value By Mode				Distribution of Funding Level by Mode			
	Fully	Not Fully Funded			Fully	Not Fully Funded			Fully	Not Fully Funded		
	Funded	Has Cost	No Cost	Total	Funded	Has Cost	No Cost	Total	Funded	Has Cost	No Cost	Total
Air				-								
Highway	2,574,502	10,312,496		12,886,998	76\%	99\%		93\%	20\%	80\%		100\%
Maritime				-								
Rail	811,208	112,503		923,711	24\%	1\%		7\%	88\%	12\%		100\%
Intermodal				-								
Total	3,385,710	10,424,999		13,810,709	100\%	100\%		100\%	25\%	75\%		100\%
Notes:	All projects with no cost estimates are not fully funded.											
	Cost data for projects in the Regional Transportation Plan were provided in 2003 \$. Cost estimates for projects in the Regional Transportation											
	Improvement Plan were provided in future dollars and discounted back to 2003 \$ using 3.5\% per year.											
Source:	California BINSTechnical Representative											


New Mexico: Number of Projects by Mode, by Level of Funding												
	Number of Projects By Funding Level				Distribution of Projects By Mode				Distribution of Funding Level by Mode			
	Fully	Not Fully Funded			Fully	Not Fully Funded			Fully	Not Fully Funded		
	Funded	Has Cost	No Cost	Total	Funded	Has Cost	No Cost	Total	Funded	Has Cost	No Cost	Total
Air			3	3			33\%	27\%			100\%	100\%
Highway	2		4	6	100\%		44\%	55\%	33\%		67\%	100\%
Maritime												
Rail			2	2			22\%	18\%			100\%	100\%
Intermodal												
Total	2		9	11	100\%		100\%	100\%	18\%		82\%	100\%
			New M	: Value of	Projects	by Mode,	by Level	Fundi				
				in Thousa	ds of Con	nstant 200	3 Dollars					
	Value	f Projects	Funding		Distri	bution of	Value By	ode	Distribu	ion of Fund	ding Lev	by Mode
	Fully	Not Fully	unded		Fully	Not Fully	Funded		Fully	Not Fully	Funded	
	Funded	Has Cost	No Cost	Total	Funded	Has Cost	No Cost	Total	Funded	Has Cost	No Cost	Total
Air				-								
Highway	9,000			9,000	100\%			100\%	100\%			100\%
Maritime				-								
Rail				-								
Intermodal				-								
Total	9,000		-	9,000	100\%			100\%	100\%			100\%
Notes:	All projects with n	cost estimates	not fully fu									
	Cost data provided	n 2003 \$.										
Source:	New Mexico BINS	chnical Repres	ative									


Texas: Number of Projects by Mode, by Level of Funding												
	Number of Projects By Funding Level				Distribution of Projects By Mode				Distribution of Funding Level by Mode			
	Fully	Not Fully Funded			Fully	Not Fully Funded			Fully	Not Fully Funded		
	Funded	Has Cost	No Cost	Total	Funded	Has Cost	No Cost	Total	Funded	Has Cost	No Cost	Total
Air	9			9	8\%			8\%	100\%			100\%
Highway	99	8		107	91\%	100\%		91\%	93\%	7\%		100\%
Maritime												0\%
Rail	1			1	1\%			1\%	100\%			100\%
Intermodal												0\%
Total	109	8		117	100\%	100\%	0\%	100\%	93\%	7\%		100\%
Texas: Value of Projects by Mode, by Level of Funding												
in Thousands of Constant 2003 Dollars												
	Value of Projects By Funding Level				Distribution of Value By Mode				Distribution of Funding Level by Mode			
	Fully	Not Fully Funded			Fully	Not Fully Funded			Fully	Not Fully Funded		
	Funded	Has Cost	No Cost	Total	Funded	Has Cost	No Cost	Total	Funded	Has Cost	No Cost	Total
Air	10,892			10,892	1\%			1\%	100\%			100\%
Highway	1,182,278	185,588		1,367,866	99\%	100\%		99\%	86\%	14\%		100\%
Maritime				-								
Rail	1,390			1,390					100\%			100\%
Intermodal				-								
Total	1,194,560	185,588	-	1,380,148	100\%	100\%		100\%	87\%	13\%		100\%
Notes:	All projects with no cost estimates are not fully funded.											
	Cost data provided in 2002 \$ and converted to 2003 \$ using an inflation rate of 4.0\% per year.											
Source:	Texas BINS Technical Representative											


M exico: Number of Projects by M ode, by Level of Funding												
	Number of Projects By Funding Level				Distribution of Projects By Mode				Distribution of Funding Level by Mode			
	Fully	Not Fully Funded			Fully	Not Fully Funded			Fully	Not Fully Funded		
	Funded	Has Cost	No Cost	Total	Funded	Has Cost	No Cost	Total	Funded	Has Cost	No Cost	Total
Air	0	1	0	1			0\%	2\%				
Highway	25	25	1	51	100\%	93\%	100\%	96\%	49\%	49\%	2\%	100\%
Maritime	0	0	0	0								
Rail	0	1	0	1		4\%		2\%		100\%		100\%
Intermodal	0	0	0	0								
Total	25	27	1	53	100\%	96\%	100\%	100\%	47\%	51\%	2\%	100\%
Mexico: Value of Projects by M ode, by Level of Funding												
Constant 2003 Pesos												
	Value of Projects By Funding Level				Distribution of Value By Mode				Distribution of Funding Level by Mode			
	Fully Funded	Not Fully Funded	No Cost Estimates	Total	Fully Funded	Not Fully Funded	No Cost   Estimates	Total	Fully Funded	Not Fully Funded	No Cost Estimates	Total
Air	-	62,000,000	-	62,000,000								
Highway	1,743,300,000	8,221,600,000	-	9,964,900,000	100\%	98\%		98\%	17\%	83\%		100\%
Maritime	-	-	-	-								
Rail	-	90,000,000	-	90,000,000		1\%		1\%		100\%		100\%
Intermodal	-	-	-	-								
Total	1,743,300,000	8,373,600,000	-	10,116,900,000	100\%	99\%	0\%	99\%	17\%	83\%		100\%
Notes:	Includes projects for Baja California, Chihuahua, Coahuila, Nuevo Leon, Sonora and Tamaulipas											
	All projects that are not fully funded have no cost estimates. In addition, Coahuila provided data on two projects that are fully funded, but provided no cost estimates of the data.											
Sources:	BINS Technical Representatives for each state											


Baja California: Number of Projects by Mode, by Level of Funding												
	Number of Projects By Funding Level				Distribution of Projects By Mode				Distribution of Funding Level by Mode			
	Fully	Not Fully Funded			Fully	Not Fully Funded			Fully	Not Fully Funded		
	Funded	Has Cost	No Cost	Total	Funded	Has Cost	No Cost	Total	Funded	Has Cost	No Cost	Total
Air												
Highway	14	3		17	100\%	100\%		100\%	82\%	18\%		100\%
Maritime												
Rail												
Intermodal												
Total	14	3		17	100\%	100\%	0\%	100\%	82\%	18\%		100\%
Baja California: Value of Projects by M ode, by Level of Funding												
Constant 2003 Pesos												
	Value of Projects By Funding Level				Distribution of Value By Mode				Distribution of Funding Level by Mode			
	Fully	Not Fully Funded			Fully	Not Fully Funded			Fully	Not Fully Funded		
	Funded	Has Cost	No Cost	Total	Funded	Has Cost	No Cost	Total	Funded	Has Cost	No Cost	Total
Air				-								
Highway	464,000,000	3,700,000,000		4,164,000,000	100\%	100\%		100\%	11\%	89\%		100\%
Maritime				-								
Rail				-								
Intermodal				-								
Total	464,000,000	3,700,000,000	-	4,164,000,000	100\%	100\%		100\%	11\%	89\%		100\%
Note:	Cost data provided in 2003 pesos.											
Source:	Baja California BINSTechnical Representative											


Chihuahua: Number of Projects by Mode, by Level of Funding												
	Number of Projects By Funding Level				Distribution of Projects By Mode				Distribution of Funding Level by Mode			
	Fully	Not Fully Funded			Fully	Not Fully Funded			Fully	Not Fully Funded		
	Funded	Has Cost	No Cost	Total	Funded	Has Cost	No Cost	Total	Funded	Has Cost	No Cost	Total
Air												
Highway		4		4		100\%		100\%		100\%		100\%
Maritime												
Rail												
Intermodal												
Total		4		4		100\%		100\%		100\%		100\%
Chihuahua: Value of Projects by Mode, by Level of Funding												
Constant 2003 Pesos												
	Value of Projects By Funding Level				Distribution of Value By Mode				Distribution of Funding Level by Mode			
	Fully	Not Fully Funded			Fully	Not Fully Funded			Fully	Not Fully Funded		
	Funded	Has Cost	No Cost	Total	Funded	Has Cost	No Cost	Total	Funded	Has Cost	No Cost	Total
Air				-								
Highway		503,000,000		503,000,000		100\%		100\%		100\%		100\%
Maritime				-								
Rail				-								
Intermodal				-								
Total	-	503,000,000	-	503,000,000		100\%		100\%		100\%		100\%
Notes:	All projects with no cost estimates are not fully funded.											
Source:	Chihuahua BINSTechnical Representative											


Coahuila: Number of Projects by Mode, by Level of Funding												
	Number of Projects By Funding Level				Distribution of Projects By Mode				Distribution of Funding Level by Mode			
	Fully	Not Fully Funded			Fully	Not Fully Funded			Fully	Not Fully Funded		
	Funded	Has Cost	No Cost	Total	Funded	Has Cost	No Cost	Total	Funded	Has Cost	No Cost	Total
Air		1		1		13\%		10\%		100\%		100\%
Highway	2	7		9	100\%	88\%		90\%	22\%	78\%		100\%
Maritime												
Rail												
Intermodal												
Total	2	8		10	100\%	100\%		100\%	20\%	80\%		100\%
Coahuila: Value of Projects by Mode, by Level of Funding												
Constant 2003 Pesos												
	Value of Projects By Funding Level				Distribution of Value By Mode				Distribution of Funding Level by Mode			
	Fully	Not Fully Funded			Fully	Not Fully Funded			Fully	Not Fully Funded		
	Funded	Has Cost	No Cost	Total	Funded	Has Cost	No Cost	Total	Funded	Has Cost	No Cost	Total
Air		62,000,000		62,000,000		6\%		4\%		100\%		100\%
Highway	307,000,000	1,055,600,000		1,362,600,000	100\%	94\%		96\%	23\%	77\%		100\%
Maritime				-								
Rail				-								
Intermodal				-								
Total	307,000,000	1,117,600,000	-	1,424,600,000	100\%	100\%		100\%	22\%	78\%		100\%
Notes:	Coahuila provided no cost estimates for any projects, however, two of the projects are fully funded.											
Source:	Coahuila BINS Technical Representative											


Nuevo León: Number of Projects by Mode, by Level of Funding														
	Number of Projects By Funding Level				Distribution of Projects By Mode				Distribution of Funding Level by Mode					
	Fully Funded	Not Fully Funded			Fully	Not Fully Funded			Fully Funded	Not Fully Funded				
		Has Cost	No Cost	Total	Funded	Has Cost	No Cost	Total		Has Cost	No Cost	Total		
Air														
Highway			1	1			100\%	100\%			100\%	100\%		
Maritime														
Rail														
Intermodal														
Total			1	1			100\%	100\%			100\%	100\%		
Nuevo León: Value of Projects by Mode, by Level of Funding														
	Fully	Not Fully Funded			Fully	Not Fully Funded			Fully Funded	Not Fully Funded				
	Funded	Has Cost	No Cost	Total	Funded	Has Cost	No Cost	Total		Has Cost	No Cost	Total		
Air														
Highway														
Maritime														
Rail														
Intermodal														
Total	-		-											
Notes:	All projects with n	t estimates ar	崖ly funded.											
Source:	Nuevo León BINS	ical Represent												



Tamaulipas: Number of Projects by Mode, by Level of Funding												
	Number of Projects By Funding Level				Distribution of Projects By Mode				Distribution of Funding Level by Mode			
	Fully	Not Fully Funded			Fully	Not Fully Funded			Fully	Not Fully Funded		
	Funded	Has Cost	No Cost	Total	Funded	Has Cost	No Cost	Total	Funded	Has Cost	No Cost	Total
Air												
Highway	5	11		16	100\%	92\%		94\%	31\%	69\%	0\%	100\%
Maritime												
Rail		1		1		8\%		6\%		100\%		100\%
Intermodal												
Total	5	12	0	17	100\%	100\%		100\%	29\%	71\%	0\%	100\%
Tamaulipas: Value of Projects by Mode, by Level of Funding												
Constant 2003 Pesos												
	Value of Projects By Funding Level				Distribution of Value By Mode				Distribution of Funding Level by Mode			
	Fully	Not Fully Funded			Fully	Not Fully Funded			Fully	Not Fully Funded		
	Funded	Has Cost	No Cost	Total	Funded	Has Cost	No Cost	Total	Funded	Has Cost	No Cost	Total
Air				-								
Highway	866,000,000	2,963,000,000		3,829,000,000	100\%	97\%		98\%	23\%	77\%		100\%
Maritime				-								
Rail		90,000,000		90,000,000		3\%		2\%		100\%		100\%
Intermodal				-								
Total	866,000,000	3,053,000,000	-	3,919,000,000	100\%	100\%		100\%	22\%	78\%		100\%
Notes:	Cost data provided in 2003 pesos.											
	All projects with no cost estimates are not fully funded.											
Source:	Tamaulipas BINSTechnical Representative											

Highway Project Analysis

Highway Project Analysis										
All Values in Constant 2003 Dollars or Constant 2003 Pesos										
	United States		Mexico		Total					
Number of Highway Projects										
Total Highway Projects:	237		51		288					
Fully Funded Projects:	136	57.4\%	25	49.0\%	161	55.9\%				
Not Fully Funded Projects:	101	42.6\%	26	104.0\%	127	44.1\%				
Projects with Cost Data:	225	94.9\%	50	192.3\%	275	95.5\%				
Projects with NO Cost Data:	12	5.1\%	1	2.0\%	13	4.5\%				
Constant 2003										
	Dollars		Pesos		Dollars					
Value of Highw ay Projects										
Total Cost:	\$14,302,658,965		9,964,900,000		\$15,251,697,060					
Total Cost, Fully Funded:	\$3,804,575,035	26.6\%	1,743,300,000	17.5\%	\$3,970,603,607	26.0\%				
Total Cost, Not Funded:	\$10,498,083,930	73.4\%	8,221,600,000	82.5\%	\$11,281,093,454	74.0\%				
Minimum (All Modes)	\$36,400		5,000,000							
Maximum (All Modes)	\$447,503,382		425,000,000							
Median (All Modes)	\$3,783,520		29,300,000							
	Arizona		Baja California		California		Chihuahua		Coahuila	
Number of Highway Projects										
Total Highway Projects:	21		17		103		4		9	
Fully Funded Projects:	13	61.9\%	14	82.4\%	22	21.4\%	0	0.0\%	2	22.2\%
Not Fully Funded Projects:	8	38.1\%	3	17.6\%	81	78.6\%	4	100.0\%	7	77.8\%
Projects with Cost Data:	13	61.9\%	17	100.0\%	103	100.0\%	4	100.0\%	9	100.0\%
Projects with NO Cost Data:	8	38.1\%	0	0.0\%	0	0.0\%	0	0.0\%	0	0.0\%
Value of Highway Projects [Constant 2003 Dollars or Pesos]										
Total Cost:	\$38,795,629		4,164,000,000		\$12,886,997,616		503,000,000		1,362,600,000	
Total Cost, Fully Funded:	\$38,795,629	100.0\%	464,000,000	11.1\%	\$2,574,501,686	20.0\%	0	0.0\%	307,000,000	22.5\%
Total Cost, Not Funded:	\$0	0.0\%	3,700,000,000	88.9\%	\$10,312,495,930	80.0\%	503,000,000	100.0\%	1,055,600,000	77.5\%
Minimum	\$42,601		5,000,000		\$300,000		30,000,000		3,100,000	
Maximum	\$20,767,968		1,500,000,000		\$900,000,000		188,000,000		375,000,000	
Median	\$319,507		25,000,000		\$72,450,000		142,500,000		200,000,000	

Highway Project Analysis

Highway Project Analysis										
All Values in Constant 2003 Dollars or Constant 2003 Pesos										
	New Mexico		Nuevo León		Sonora		Tamaulipas		Texas	
Number of Highway Projects										
Total Highway Projects:	6		1		4		16		107	
Fully Funded Projects:	2	33.3\%	0	0.0\%	4	100.0\%	5	31.3\%	99	92.5\%
Not Fully Funded Projects:	4	66.7\%	1	100.0\%	0	0.0\%	11	68.8\%	8	7.5\%
Projects with Cost Data:	2	33.3\%	0	0.0\%	4	100.0\%	16	100.0\%	107	100.0\%
Projects with NO Cost Data:	4	66.7\%	1	100.0\%	0	0.0\%	0	0.0\%	0	0.0\%
Value of Highway Projects [Constant 2003 Dollars or Pesos]										
Total Cost:	\$9,000,000		N/A		106,300,000		3,829,000,000		\$1,367,865,720	
Total Cost, Fully Funded:	\$9,000,000	100.0\%	N/A		106,300,000	100.0\%	866,000,000	22.6\%	\$1,182,277,720	86.4\%
Total Cost, Not Funded:	\$0	0.0\%	N/A		0	0.0\%	2,963,000,000	77.4\%	\$185,588,000	13.6\%
Minimum	\$3,000,000		N/A		12,600,000		15,000,000		\$36,400	
Maximum	\$6,000,000		N/A		35,600,000		800,000,000		\$85,882,160	
Median	\$4,500,000		N/A		29,050,000		145,500,000		\$3,855,280	





Costs of Transportation HWY Projects Associated with the BINS Project							
All States			US States			Mexican States	
Projects with Cost Data:	275		Projects with Cost Data:	225		Projects with Cost Data:	50
Projects with NO Cost Data:	13		Projects with NO Cost Data:	12		Projects with NO Cost Data:	1
Total Cost ${ }^{1}$ :	\$15,251,697,060		Total Cost:	\$14,302,658,965		Total Cost:	9,964,900,000
Cost Specific:		\%	Cost Specific:		\%	Cost Specific:	
0 to 999,999	41	15\%	0 to 999,999	41	18\%	0 to 999,999	0
1 million - 24,999,999	111	40\%	1 million - 24,999,999	99	44\%	1 million - 24,999,999	12
25 million - 99,999,999	59	21\%	25 million - 99,999,999	42	19\%	25 million - 99,999,999	17
100 million - 199,999,999	28	10\%	100 million - 199,999,999	21	9\%	100 million - 199,999,999	7
>200 Million	36	13\%	>200 Million	22	10\%	>200 Million	14
${ }^{1}$ The total cost for Mexican States was divided by 10.5 to converted to U.S. dollars							
Arizona			California				
Projects with Cost Data:	13		Projects with Cost Data:	103			
Projects with NO Cost Data:	8		Projects with NO Cost Data:	0			
Total Cost:	\$38,795,629		Total Cost:	\$12,886,997,616			
Cost Specific:		\%	Cost Specific:		\%		
0 to 999,999	8	62\%	0 to 999,999	3	3\%		
1 million - 24,999,999	5	38\%	1 million-24,999,999	30	29\%		
25 million - 99,999,999	0	0\%	25 million - 99,999,999	27	26\%		
100 million - 199,999,999	0	0\%	100 million - 199,999,999	21	20\%		
>200 Million	0	0\%	>200 Million	22	21\%		
Texas			New Mexico				
Projects with Cost Data:	107		Projects with Cost Data:	2			
Projects with NO Cost Data:	0		Projects with NO Cost Data:	4			
Total Cost:	\$1,367,865,720		Total Cost:	\$9,000,000			
Cost Specific:		\%	Cost Specific:		\%		
0 to 999,999	30	28\%	0 to 999,999	0	0\%		
1 million - 24,999,999	62	58\%	1 million - 24,999,999	2	100\%		
25 million - 99,999,999	15	14\%	25 million - 99,999,999	0	0\%		
100 million - 199,999,999	0	0\%	100 million - 199,999,999	0	0\%		
>200 Million	0	0\%	>200 Million	0	0\%		
Source:	BINS Technical Committee representatives.						
Note	No cost data were provided for Chihuahua, Coahuila and Nuevo			eon.			


Baja California			Tamaulipas			Chihuahua	
Projects with Cost Data:	17		Projects with Cost Data:	16		Projects with Cost Data:	4
Projects with NO Cost Data:	0		Projects with NO Cost Data:	0		Projects with NO Cost Data:	0
Total Cost:	4,164,000,000		Total Cost:	3,829,000,000		Total Cost:	503,000,000
Cost Specific:		\%	Cost Specific:		\%	Cost Specific:	
0 to 999,999	0	0\%	0 to 999,999	0	0\%	0 to 999,999	0
1 million - 24,999,999	8	47\%	1 million - 24,999,999	1	6\%	1 million - 24,999,999	0
25 million - 99,999,999	6	35\%	25 million - 99,999,999	5	31\%	25 million - 99,999,999	1
100 million - 199,999,999	0	0\%	100 million - 199,999,999	4	25\%	100 million - 199,999,999	3
>200 Million	3	18\%	>200 Million	6	38\%	>200 Million	0
Sonora			Coahuila			Nuevo Leon	
Projects with Cost Data:	4		Projects with Cost Data:	9		Projects with Cost Data:	0
Projects with NO Cost Data:	0		Projects with NO Cost Data:	0		Projects with NO Cost Data:	1
Total Cost:	106,300,000		Total Cost:	1,362,600,000		Total Cost:	0
Cost Specific:		\%	Cost Specific:		\%	Cost Specific:	
0 to 999,999	0	0\%	0 to 999,999	0	0\%	0 to 999,999	0
1 million - 24,999,999	1	25\%	1 million - 24,999,999	2	22\%	1 million - 24,999,999	0
25 million - 99,999,999	3	75\%	25 million - 99,999,999	2	22\%	25 million - 99,999,999	0
100 million - 199,999,999	0	0\%	100 million - 199,999,999	0	0\%	100 million - 199,999,999	0
>200 Million	0	0\%	>200 Million	5	56\%	>200 Million	0
Source:	BINS Technical Committee representatives.						
Note:	No cost data were provided for Nuevo Leon.						


$\%$
$0 \%$
$24 \%$
$34 \%$
$14 \%$
$28 \%$


$\%$
$0 \%$
$0 \%$
$25 \%$
$75 \%$
$0 \%$


Number of Projects by Time Categories (ALL M ODES)				
	All States	United States	Mexico	
Projects with Time Data:	284	233	51	
Projects w/ Beginning Year Data:	215	188	27	
Projects w/ Completion Year Data:	136	85	51	
Projects w/ NO Time Data:	28	26	2	
Beginning Year:				
2003-2006	186	159	27	
2007-2008	5	5	0	
2009-2013	14	14	0	
2014-2017	1	1	0	
2018-2020	9	9	0	
Completion Year:				
2003-2006	48	2	46	
2007-2008	9	4	5	
2009-2013	34	34	0	
2014-2017	8	8	0	
2018-2020	37	37	0	
Distribution of Project by Time Categories				
	All States	United States	Mexico	
Projects with Time Data:				
Projects w/ Beginning Year Data:	75.7\%	80.7\%	52.9\%	
Projects w/ Completion Year Data:	47.9\%	36.5\%	100.0\%	
Projects w/ NO Time Data:	9.9\%	11.2\%	3.9\%	
Beginning Year:				
2003-2006	86.5\%	84.6\%	100.0\%	
2007-2008	2.3\%	2.7\%	0.0\%	
2009-2013	6.5\%	7.4\%	0.0\%	
2014-2017	0.5\%	0.5\%	0.0\%	
2018-2020	4.2\%	4.8\%	0.0\%	
Completion Year:				
2003-2006	35.3\%	2.4\%	90.2\%	
2007-2008	6.6\%	4.7\%	9.8\%	
2009-2013	25.0\%	40.0\%	0.0\%	
2014-2017	5.9\%	9.4\%	0.0\%	
2018-2020	27.2\%	43.5\%	0.0\%	
Source: BINS Technical Committee representatives.				




Costs of Transportation Projects Associated with the BINS Project (ALL M ODES)								
All States			US States			Mexican States		
Projects with Cost Data:	294		Projects with Cost Data:	242		Projects with Cost Data:	52	
Projects with NO Cost Data:	17		Projects with NO Cost Data:	17		Projects with NO Cost Data:	0	
Total Cost ${ }^{1}$ :	\$16,202,166,725		Total Cost:	\$15,238,652,439		Total Cost:	10,116,900,000	
Cost Specific:		\%	Cost Specific:		\%	Cost Specific:		\%
0 to 999,999	49	17\%	0 to 999,999	49	20\%	0 to 999,999	0	0\%
1 million - 24,999,999	116	39\%	1 million - 24,999,999	104	43\%	1 million - 24,999,999	12	23\%
25 million - 99,999,999	61	21\%	25 million - 99,999,999	42	17\%	25 million - 99,999,999	19	37\%
100 million - 199,999,999	29	10\%	100 million - 199,999,999	22	9\%	100 million - 199,999,999	7	13\%
>200 Million	39	13\%	>200 Million	25	10\%	>200 Million	14	27\%
${ }^{1}$ The total cost for Mexican States	was divided by 10.5	conve	ed to U.S. dollars					
Arizona			California					
Projects with Cost Data:	13		Projects with Cost Data:	110				
Projects with NO Cost Data:	8		Projects with NO Cost Data:	0				
Total Cost:	\$38,795,629		Total Cost:	\$13,810,708,690				
Cost Specific:		\%	Cost Specific:		\%			
0 to 999,999	8	62\%	0 to 999,999	3	3\%			
1 million-24,999,999	5	38\%	1 million-24,999,999	33	30\%			
25 million - 99,999,999	0	0\%	25 million - 99,999,999	27	25\%			
100 million - 199,999,999	0	0\%	100 million - 199,999,999	22	20\%			
>200 Million	0	0\%	>200 Million	25	23\%			
Texas			New Mexico					
Projects with Cost Data:	117		Projects with Cost Data:	2				
Projects with NO Cost Data:	0		Projects with NO Cost Data:	9				
Total Cost:	\$1,380,148,120		Total Cost:	\$9,000,000				
Cost Specific:		\%	Cost Specific:		\%			
0 to 999,999	38	32\%	0 to 999,999	0	0\%			
1 million - 24,999,999	64	55\%	1 million - 24,999,999	2	100\%			
25 million - 99,999,999	15	13\%	25 million - 99,999,999	0	0\%			
100 million - 199,999,999	0	0\%	100 million - 199,999,999	0	0\%			
>200 Million	0	0\%	>200 Million	0	0\%			
Source:	BINS Technical Comm	ittee re	presentatives.					
Note:	No cost data were p	vided	for Chihuahua, Coahuila and Nuevo	eon.				


Baja California			Tamaulipas			Chihuahua		
Projects with Cost Data:	17		Projects with Cost Data:	17		Projects with Cost Data:	4	
Projects with NO Cost Data:	0		Projects with NO Cost Data:	0		Projects with NO Cost Data:	0	
Total Cost:	4,164,000,000		Total Cost:	3,919,000,000		Total Cost:	503,000,000	
Cost Specific:		\%	Cost Specific:		\%	Cost Specific:		\%
0 to 999,999	0	0\%	0 to 999,999	0	0\%	0 to 999,999	0	0\%
1 million - 24,999,999	8	47\%	1 million - 24,999,999	1	6\%	1 million-24,999,999	0	0\%
25 million - 99,999,999	6	35\%	25 million - 99,999,999	6	35\%	25 million - 99,999,999	1	25\%
100 million - 199,999,999	0	0\%	100 million - 199,999,999	4	24\%	100 million - 199,999,999	3	75\%
>200 Million	3	18\%	>200 Million	6	35\%	>200 Million	0	0\%
Sonora			Coahuila					
Projects with Cost Data:	4		Projects with Cost Data:	10				
Projects with NO Cost Data:	0		Projects with NO Cost Data:	0				
Total Cost:	106,300,000		Total Cost:	1,424,600,000				
Cost Specific:		\%	Cost Specific:		\%			
0 to 999,999	0	0\%	0 to 999,999	0	0\%			
1 million - 24,999,999	1	25\%	1 million - 24,999,999	2	20\%			
25 million - 99,999,999	3	75\%	25 million - 99,999,999	3	30\%			
100 million - 199,999,999	0	0\%	100 million - 199,999,999	0	0\%			
>200 Million	0	0\%	>200 Million	5	50\%			
Source:	BINS Technical Committee representatives.							
Note	No cost data were provided for Nuevo Leon.							

## APPENDIX 11: <br> LIST OF LITERATURE AND LEGISLATIVE SOURCES

## APPENDIX 11 LIST OF LITERATURE AND LEGISLATIVE SOURCES:

## Literature

## 1. Draft Programming Process Working Paper (Arizona)

This paper discusses an approach on how to evaluate and prioritize deferred projects for the 2004 2008 Arizona Transportation Program. It develops a methodology to weigh various evaluation criteria (e.g., safety, mobility, feasibility, environmental and economic goals) and is an example of a method to prioritize the funding and construction of transportation projects. Process relies on input from an advisory committee and some subjective weighting.

Date: September 2002
Source: Lima \& Associates, Arizona Department of Transportation
Contact:

## 2. Five-Year Highway Construction Program Priority Programming Process (Arizona)

This document details the highway construction and prioritization process in Arizona. It describes how to analyze the highway system needs, how to identify sources of available funding for projects, and processes for updating the state's transportation program. It provides some examples of possible evaluation criteria used to prioritize transportation projects.

Date: 1997
Source: Arizona Department of Transportation
Contact: Arnold Burnham
ABurnham@dot.state.az.us

## 3. Five-Year Transportation Facilities Construction Program (Arizona)

This report describes the Five-Year Construction Program developed in Arizona by the Arizona DOT. This program is a budget of what Arizona expects to receive in funds from various sources and how it proposes to spend them project by project. The report describes in detail the Priority Programming Process for highway and airports. Physical and financial data is provided for each project. There is also forecast project data for 2003-2007. This report was used as an informative source for describing the Arizona transportation and programming process presented in the BINS study.

Date: June 2002
Source: Arizona Department of Transportation
Contact: Arnold Burham, 601-712-8591

## 4. Los Angeles to San Diego Rail Corridor Improvements Technical Study (California)

This document discusses several alternative improvements to the rail line that runs between Los Angeles, California and San Diego, California. This section is the second busiest passenger rail corridor in the United States and is planned to be a part of the California High-Speed Rail Authority in the future. The document pertains to BINS because it evaluates several projects in the border region that can increase the mobility of people in the future.

Date: 2002
Source: California Transportation Commission, IBI Group
Contact: Patrick Merrill
(916) 654-7543

## 5. Regional Transportation Plan Guidelines

This handbook describes the regional transportation planning process in the State of California. In its discussion of Regional Transportation Plans, it includes chapters on planning, financing, environmental considerations and public involvement. Knowledge of regional planning processes is helpful for identifying the actors responsible for funding and planning of transportation projects.

Date: 1999
Source: California Transportation Commission http://www.dot.ca.gov/hq/tpp/Offices/ORIP/TRP/Contents.html

Contact: California Transportation Commission
1120 N Street, (MS-2)
P.O. Box 942873

Sacramento, CA 94273-0001
(916) 654-4364

## 6. Latin America Trade and Transportation Study (LATTS)

This study surveys the transportation deficiencies in the multimodal LATTS Strategic Transportation System, which facilitates trade between Latin America and 13 southeastern states. The study forecasts future demands on the LATTS Transportation System and estimates the costs of the needed improvements to support the expected increase in commercial activity. The LATTS study serves as an example of a system-wide transportation study.

Date: March 2001
Source: Wilbur Smith Associates
Contact: (803) 758-4500

## 7. Western Transportation Trade Network Study

This study presents a multimodal corridor analysis of the commercial transportation network for 14 western states, including Arizona, California, New Mexico, and Texas. The study identifies major transportation corridors in the western states and their levels of infrastructure deficiencies (often using "High Priority Corridor" definitions from federal legislation). This study is the main reference used in the BINS study to identify transportation infrastructure deficiencies and needed future improvements on the U.S. side of the international border.

Date: 1999
Source: Wilbur Smith Associates, Colorado Department of Transportation
Contact:

## 8. Guia Para Ia Presentacion y Evaluacion de Propuestas Sobre Puertos Fronterizos (Guide for the Presentation and Evaluation of Proposals for Border Crossings)

This document explains the Mexican process of proposing and evaluating new border crossings. It describes the necessary coordination between several federal departments and describes the evaluation factors that must be considered for each project. It pertains to BINS because it lays the groundwork for a procedure to evaluate (and prioritize) border crossing improvements.

Date: April 2001
Source: Grupo Intersecretarial de Puertos y Servicios Fronterizos (Inter-secretarial Group of Border Ports and Services); Secretaria de Relaciones Exteriores de M exico

Contact:

## 9. The Impacts of Constrained Air Transportation Capacity on the San Diego Regional Economy (Draft) (California)

This study of airport capacity in the San Diego region evaluates the economic effects of insufficient airport infrastructure. It asks, "What will be the cost to the region's economy and its residents if the future demand for air transportation services is not met?" It estimates the future amount of increased capacity needed based on forecasts of regional economic activity. The study is related to BINS because some of the transportation projects to be prioritized involve airport infrastructure improvements.

Date: September 2000
Source: Hamilton, Rabinovitz \& Alschuler, Inc.
Contact:

## 10. Criterio Para Jerarquizar la Conservacion de Carreteras con Base en Su Importancia Economica

The document argues in favor of prioritizing the repair of highways in Mexico based on their economic importance, rather than the number of vehicles that use the highway per day. The values of freight cargo are estimated for ten segments of highway by compiling information on the number of trucks, the types of goods, and the prices of those goods. The ten road segments are then ranked by the total value of the goods being transported. These economic value criteria developed in the report are used as evaluation factors for corridors and projects in this BINS study.

Date: 1996
Source: Instituto Mexicano del Transporte
Contact:

## 11. Programa Regional de Desarrollo Urbano del Corredor TijuanaRosarito 2000 (2000 Regional Urban Development Program for the Tijuana-Rosarito Corridor)

This plan describes the proposed implementation of the Tijuana-Rosarito Corridor for the year 2000. The plan touches at different aspects of transportation related issues in Baja California. Maps are included, and provide a good perspective of the area covered by the corridor analysis.

Date: 2000
Source: SAHOPE, Dirección de Planeación Urbana y Regional (CD-ROM)
Contact: Carlos Lopez Rodriguez

## 12. High Occupancy Vehicle/Managed Lane Study

This study describes the process of screening the regional freeway system to determine potential High Occupancy Vehicle (HOV) facilities. It uses forecasts of future freeway congestion and potential HOV demand to identify potential HOV corridors. The potential HOV corridors are then evaluated according to a set of both quantitative and qualitative criteria. This study presents both a methodology for evaluation of transportation projects and an analysis of the value of HOV projects as a tool to increase regional mobility.

Date: July 2002
Source: Parsons Brinckerhoff Quade and Douglas, San Diego Association of Governments
Contact:

## 13. North Coast Transportation Study (California)

This study evaluates transportation improvement alternatives along the north coast section of San Diego County that runs between San Diego and Orange Counties. Alternatives examined include elevated freeway sections, carpool lanes, additional railroad stations and facilities, arterial street expansion, and freight improvements. It is pertinent to the BINS study because it is an example of a multimodal analysis of a transportation corridor.

Date: June 2000
Source: San Diego Association of Governments
Contact: San Diego Association of Governments
401 B Street, Suite 800
San Diego, CA 92101
(619) 595-5300

## 14. Routes 67/125 Corridor Study (California)

This corridor study evaluates options for accommodating future north-south travel demand east of Interstate 15 in San Diego County. Six alternatives are evaluated. This study provides a recent example of a corridor evaluation in the border region. As evaluation criteria, the study looks at traffic volumes as well as several environmental factors

Date: June 2002
Source: San Diego Association of Governments
Contact: San Diego Association of Governments
401 B Street, Suite 800
San Diego, CA 92101
(619) 595-5300

## 15. San Diego Region-Baja California Cross-Border Transportation Study

This study of the San Diego-Baja California region updates binational transportation data, develops a Cross-Border Travel Forecasting Model (TFM), and examines a range of future CrossBorder Alternatives that include potential new ports of entry. The study provides examples of potential cross-border corridors and their resultant impacts on traffic flows.

Date:	November 2000
Source:	San Diego Association of Governments
Contact:	San Diego Association of Governments
	401 B Street, Suite 800                     San Diego, CA 92101

## 16. State Route 94 Corridor: Tecate Port of Entry Trade and Truck Traffic (California)

Truck traffic on State Route 94 is affected by cross-border merchandise trade through the Tecate Port of Entry. This study evaluates current trade and commercial vehicle activity through the Tecate crossing. Forecasts of trade and truck traffic through this international crossing were developed, taking into account the continued implementation of NAFTA. This study serves as an example of a port of entry and corridor project analysis in the border region.
Date: July 1997
Source: San Diego Association of Governments
Contact: San Diego Association of Governments
401 B Street, Suite 800
San Diego, CA 92101
(619) 595-5300

## 17. Metodologia para el Analisis Beneficio/Costo de un Nuevo Puerto Fronterizo, Integrando Los Factores Economicos, Financieros, Sociales y Ambientales (Methodology for Cost-Benefit Analysis of New Ports of Entry Integrating Economic, Financial, Social, and Environmental Factors)

This document describes an integrated evaluation methodology for the establishment of new border crossings. The objective of this methodology is to identify and weigh a large range of possible costs and benefits of a new border crossing (i.e., not solely economic criteria). It is relevant to BINS because it lays the groundwork for a procedure and criteria to evaluate (and prioritize) border crossing improvements.

Date: August 2000
Source: Secretaria de Comunicaciones y Transportes
Contact:

## 18. Modernizacion del Sistema Carretero Troncal (Modernization of the Main Highway System)

This document presents the Secretariat of Communications and Transport investment program for highway construction and modernization for the years 1999 and 2000, as well as projected investment needs through 2020. The central goal of the listed projects consists of modernizing the ten main highway corridors that extend throughout the national territory. Several rankings of the corridors are also presented. This document is the main reference used in the BINS study to identify planned transportation infrastructure projects on the Mexican side of the international border. The content is presented in both English and Spanish.

Date: October 1999
Source: Secretaria de Comunicaciones y Transportes http://www.sct.gob.mx/acuota/index.htm\#contenido

Contact:

## 19. Sector Comunicaciones y Transportes Programa de Trabajo 2002 (2002 Work Program, Communications and Transportation Sector)

This document defines transportation and infrastructure and service goals for the 2002 work program of the Mexican federal government. It is important to BINS research because it defines the general plan and strategy of the Secretaria de Transporte y Comunicaciones (SCT) in Mexico.

Date: 2002
Source: Secretaria de Transporte y Comunicaciones (SCT)
Contact:

## 20. The U.S.-M exican Border Environment: A Road Map to a Sustainable 2020

This presents a series of monographs that analyze long-range environmental and demographic issues that pertain to the sustainable development of the U.S.-M exico border region. The book includes chapters on demographic and economic forecasts for the border region, border environmental issues and cross-border planning and cooperation. With regard to BINS, the demographic forecasts are valuable for estimating the future demands placed on the border region transportation system.

Date: September 2002
Source: Southwest Center for Environmental Research and Policy (SCERP)
Contact: Paul Ganster
School of Business, University of Redlands
1200 East Colton Ave
Redlands, CA 92373-0999
(909) 748-6261

## 21. Transportation Planning Policy Manual (Texas)

The document discusses the regional planning process in the State of Texas. Knowledge of regional planning processes is helpful for identifying the actors responsible for funding and planning of transportation projects.

Date: September 2001
Source: Texas Department of Transportation
Contact: Customs office, operations, collection, Cd. Juárez, 1993-1994, import, export, statistics

## 22. Evaluation of Travel Time Methods to Support Mobility Performance Monitoring

This study attempts to determine a benchmark border crossing delay measure for commercial vehicles. Seven POEs were surveyed. The delay time represents the difference between the average crossing time and the free-flow crossing time. A Buffer Time and Buffer index were also calculated, representing the difference between the $95^{\text {th }}$ percentile crossing tie and the average crossing time for all trucks. This study has implications for the BINS analysis of port of entry infrastructure improvement recommendations that are designed to improve the flow of cross-border traffic.

Date: April 2002
Source: Texas Transportation Institute
Contact:

## 23. Border Demographic Impacts on the Urban Environment and Sustainable Development of Imperial County, California, and Mexicali Municipio, Mexico

This project analyzes recent demographic, economic, energy, and water trends for Imperial County, California and Mexicali, Baja California, to estimate future population and economic growth. It assesses the implications of this growth on the supply of energy and water to these areas. It includes demographic projections and geographical analysis which are useful for the BINS assessment.

```
Date: September 2002
Source: University of Redlands
Contact: James B. Pick
 School of Business, University of Redlands
 1200 East Colton Ave
 Redlands, CA 92373-0999
 (909) 748-6261
```


## 24. North American Transportation in Figures

This is a graphical and statistical overview of transportation and commercial trends in the NAFTA countries from 1990 to 1996. The information is somewhat dated by now, but it provides several useful graph concepts for the BINS study.

Date: October 2000
Source: U.S. Census Bureau
www.census.gov/econ/www/natf/natf.html
Contact:

## 25. Binational Border Transportation Planning and Program Process

The P\&P study conducted an inventory of infrastructure along the U.S.-Mexico border and specified some of the "disconnects" that existed in 1998. Two key conclusions of the P\&P study were: (1) The JWC should focus on the area 100 kilometers on either side of the U.S.-Mexico border; and (2) More coordination is needed between the U.S. and Mexican governments with regard to border transportation planning.

Date: March 1998
Source: U.S. Department of Transportation, Federal Highway Administration
Contact:

## 26. Highway Economic Requirements System—State version user's guide (hers-st v 2.0)

This document is a user's manual for the FHWA's Highway Economic Requirements System (HERS). HERS is the computer model software that is used to analyze data from the FHWA's Highway Performance Monitoring System (HPMS) to prioritize projects using cost-benefit techniques. This model informs the BINS study's process for evaluating transportation projects by providing an example of a rational method to prioritize the construction and funding of various highway projects using cost-benefit ratios (as well as the data that is available to make such determinations).

Date: 2002
Source: U.S. Department of Transportation, Federal Highway Administration
Contact:

## 27. Highway Performance Monitoring System Field Manual (HPMS)

This manual describes the content and uses of the FHWA's Highway Performance M onitoring System. The HPMS is a continuous data collection system that was developed by the FHWA in conjunction with the states in 1978. Currently, the HPMS contains over 110,000 highway sample segments, the most comprehensive nationwide data system in use regarding the physical condition of the nation's infrastructure. The HPMS provides an example of the data available for various pieces of highway infrastructure on the U.S. side of the border region to be analyzed in the BINS study.

Date: December 2000
Source: U.S. Department of Transportation, Federal Highway Administration

## Contact:

## 28. 1999 Status of the Nation's Highways, Bridges and Transit: Conditions and Performance (Report to Congress)

Provides an objective appraisal of highway, bridge and transit finance, physical conditions, operational performance, and future investment requirements. Assists in developing U.S. federal transportation legislative program. Consolidates data provide by State and local governments to provide a nation-wide summary of transportation needs through 2017. Uses economic modeling, lays ground work for economic evaluation of transportation projects.

Date: 2000
Source: U.S. Department of Transportation, Federal Highway Administration
Contact:

## 29. AARoads High Priority Corridors

Describes the U.S. High Priority Corridors designated by the ISTEA of 1991, the National Highway System Designation Act of 1995 (NHS) and the Transportation Equity Act for the $21^{\text {t }}$ Century of 1998 (TEA-21). A brief synopsis of the legislation for each corridor; an overview of events related to each corridor since its designation. The High Priority Corridors that traverse the U.S.-Mexico border region (along with corridors designated by Mexican legislation) are used for the BINS transportation infrastructure needs assessment.

Date: 1998
Source: U.S. Department of Transportation http://www.fhwa.dot.gov/tea21/sumcov.htm

## Contact:

## 30. A Guide to Metropolitan Transportation Planning Under ISTEA—How the Pieces Fit Together

This guide summarizes how the changes legislated under the Intermodal Surface Transportation Efficiency Act (ISTEA) of 1991 affect the metropolitan transportation planning process in the United States. The major changes include increased planning authority for local officials and Metropolitan Planning Organizations and increased public participation and input in planning. With regard to BINS, local governments have much greater responsibility for collecting information on transportation projects and setting project priorities.

## Date:

Source: U.S. Department of Transportation www.fta.dot.gov/library/planning/MTPISTEA/424MTP.html

Contact:

## 31. NHS Intermodal Freight Connectors: A Report to Congress

This report (1) evaluates the condition of NHS connector highway infrastructure to major intermodal freight terminals; (2) reviews improvements and investments made or programmed for these connectors; and (3) identifies impediments and options to making improvements to the intermodal freight connectors. Projects that improve intermodal facility infrastructure are a key component of the BINS effort to improve the flow of goods in the U.S.-Mexico border region.

Date: December 2000
Source: U.S. Department of Transportation
Contact:

## 32. Coordinated Operational Plan to Ensure Mexican Trucks' Compliance with U.S. Standards

This study examines: (1) the extent to which Mexican-domiciled commercial trucks are likely to travel beyond the U.S. border commercial zones once the border is fully opened, (2) U.S. government agencies' efforts to ensure that Mexican commercial carriers meet U.S. safety and emissions standards and (3) how Mexican government and private sector efforts contribute to ensuring that Mexican commercial vehicles entering the United States meet U.S. safety and emissions standards.

Date: December 2001
Source: U.S. General Accounting Office
Contact: Phillip Herr (202) 512-8509

## 33. Marine Transportation: Federal Financing and a Framework for Infrastructure Investments

This report provides information on the amount of federal funds expended to support the U.S. commercial marine transportation system and the amount of revenue collected from federal assessments on the users of the system for fiscal years 1999, 2000, and 2001. It also presents a framework to Congress that could be used to consider potential changes to the scope or nature of future federal investments in the marine transportation system. The report contains expenditure and collection information from 15 federal agencies. Seaports are one of the modes for which infrastructure is to be analyzed in the BINS study.

Date: September 2002
Source: U.S. General Accounting Office
Contact: JayEtta Hecker (202) 512-2834
Randall Williamson (206) 287-4860

## 34. U.S.-Mexico Border: Better Planning, Coordination Needed to Handle Growing Commercial Traffic

This report provides information and analysis on (1) the nature of commercial truck traffic at the southwest border; (2) the factors that contribute to congestion; and (3) the actions, including programs and funding, that are being taken to address these problems. Recommendations to improve coordination include implementing inspection technologies and increasing binational dialogue. Analysis of the cost-effectiveness of implementing technology to improve the flow of goods and people in the border region is a key component of the BINS assessment.

Date: March 2000
Source: U.S. General Accounting Office www.dallasfed.org/htm/eyi/global/O109border.html

Contact: Phillip Herr (202) 512-8509

## 35. Evaluating Freight Mobility on a Regionwide Basis Using Emme/TwoFreight Action Strategy (Fast) Truck Model for Puget Sound Region (Washington)

This study evaluates the use of the FAST forecasting model to analyze the benefits of transportation investments that impact the movement of goods in the Puget Sound region in the State of Washington. The study demonstrates that the freight forecasting tool can be effectively used to evaluate alternative strategies and projects aimed at improving freight mobility. The study pertains to BINS because it discusses several evaluation criteria (delay, safety, environment, etc.) and a method for evaluating infrastructure improvements in a border region.

Date: March 2002
Source: Cambridge Systematics, Inc., Washington Department of Transportation
Contact: Arun R. Kuppam
Cambridge Systematics, Inc.
225 S. Rio Vista Street \#3
Anaheim, CA 92806
(714) 630-7573

## 36. White House Details 22-point U.S.-Mexico Border Partnership Action Plan

This agreement signed between Mexico and the United States aims to upgrade border infrastructure and facilitate the legitimate flow of people and goods between the two nations. With regard to securing infrastructure and the flow of people, the agreement includes points on long-term planning, relief of bottlenecks, infrastructure protection, cross border cooperation, financing projects at the border, and NAFTA travel.

Date: March 21, 2002
Source: White House Office of the Press Secretary
Contact:

## Legislation

## 1. Transportation Equity Act for the 21st Century: a Summary

This summary of the United States' guiding transportation legislation outlines the mechanics of planning and funding processes at various levels of government and the major priorities of the U.S. transportation system. Major change is increased flexibility and authority at the local levels and public input.

Date: 1998
Source: U.S. Department of Transportation
http://www.fhwa.dot.gov/tea21/sumcov.htm
Contact:

APPENDIX 12:
GLOSSARY OF TERMS

## APPENDIX 12: GLOSSARY OF TERMS

AADT	Average Annual Daily Traffic. AADT is measure of the average traffic volume found   on a segment of highway. Specifically, AADT is the daily number of vehicles (or   traffic) averaged over a calendar or fiscal year on a particular segment of highway.
ADOT	Arizona Department of Transportation.
BANOBRASBanco Nacional de Obras y Servicios [National Bank of Works and Services]. This is   Mexico's Development Bank, and it deals with transportation budgeting and also   serves as the conduit for loans and grants from the World Bank and Inter-American   Development Bank.	
BGIS	Binational Border Geographic Information System. A project designed to associate   corridor and transportation project data within the GIS system
BINS	Binational Border Transportation Infrastructure Needs Assessment Study.
B-O-T	Build-Operate-Transfer System. A system where the government grants a concession   for a toll road to a winning bidder, who then builds, operates and after a number of   years, transfers the projects back to government ownership.
CTS	Bureau of Transportation Statistics. The BTS is a US Federal agency that began   operation in 1992 and is part of the US Department of Transportation. The BTS was   established under the Intermodal Surface Transportation Efficiency Act [ISTEA] of   1991 to collect data, analyze and report on transportation statistics to ensure the   most cost-effective use of transportation-monitoring resources. The BTS brings a   greater degree of coordination, comparability, and quality standards to   transportation data.
CABIN	Comisión de Avaluos de Bienes Nacionales. CABIN is a Mexican Federal agency   responsible for infrastructure in the POEs.
CALTRANS	The California Department of Transportation.
Capacity	In the BINS study this refers to peak hour capacity which is the maximum number of   vehicles that can pass over a given segment of a roadway in the morning or evening   peak hour.
Caminos y Puentes Federales de Ingreso. CAPUFE is the Mexican Federal highway toll	
road agency associated with the SCT. CAPUFE is a decentralized agency responsible	
for the operation and maintenance of toll roads and bridges built with federal funds	
before private investment was allowed in infrastructure projects. As of 1998, the	
highway network covered by CAPUFE included about 1,360 km and 33 bridges, 12 of	

them across international borders. Its function in the planning process is limited to programming and budgeting objectives, since planning for added infrastructure is performed by another SCT agency. CAPUFE is authorized to propose and implement solutions for operational problems occurring at border crossing bridges. Its financial capability (previous authorization from SHCP) gives high leverage to this agency.

CBI Coordinated Border Infrastructure Program. A provision in the United States Transportation Equity Act for the $21^{\text {t }}$ Century legislation to provide funds for projects those are important to binational transportation.

CMAQ Congestion Mitigation and Air Quality program. A US federal government program under TEA-21 that aims to improve air quality in geographical areas that do not meet US Federal government air quality standards ["non-attainment" areas]. This program provides additional funding for the construction of non-single occupancy vehicle (SOV) projects.

CODESOL A Mexican agreement for Social Development. The budget request for the state and part of the national planning exercise.

COPLADE In Mexico, a state level planning agency responsible for the economic development plans of the state.

COPLADEM In Mexico, a local level planning agency responsible for the economic development plans of the jurisdiction.

Corridor A combination of modes that move people, vehicles and goods from one location to another. In general, a transportation corridor is not just one road or rail line, but a combination of modes.

CTC California Transportation Commission. This nine member board oversees the California Department of Transportation [CALTRANS] and the programming of funds for projects sponsored by Metropolitan Planning Organizations.

DOT In the United States, this refers to a Department of Transportation. This can occur at the Federal level, where there is the US DOT or the state level, for example the Arizona Department of Transportation or ADOT.

FAA The United States Federal Aviation Administration. This agency is responsible for implementing federal policy for airports and air travel.

FAHP The United States Federal -aid Highway Program. This is a federal grant program that provides highway funds to states and local governments.

FHWA The United States Federal Highway Administration. This federal agency is responsible for disbursing highway funds to state and local governments and assuring compliance with federal requirements.

FRA The United States Federal Railroad Administration. This agency is responsible for regulating rail travel.

FNM A Mexican railroad titled Ferrocarriles Nacionales de Mexico (FNM - National Railroads of Mexico). FNM is a state-owned company in the pocess of being privatized now that Mexican law has been amended to allow private investment in the railway system.

FTA The United States Federal Transit Administration. This agency is responsible for disbursing transit funds and providing technical assistance on transit projects to state and local governments.

GSA The United States General Services Administration. This US federal agency is responsible for design, construction and maintenance of border station facilities leased to federal inspection services.

HPC High Priority Corridors. The Intermodal Surface Transportation Efficiency Act of 1991 (ISTEA), the National Highway System Designation Act of 1995 (NHS), and the Transportation Equity Act for the 21st Century (TEA-21) authorized 44 "high-priority corridors." The first 23 were designated by ISTEA, the next 12 by NHS, 18 by TEA-21, and one by the Fiscal Year 2002 Transportation Appropriations Bill. These corridors were deemed by this legislation to be of national importance.

INS The United States Immigration and Naturalization Service. This federal agency is responsible for enforcing immigration policies, including inspections at international ports of entry.

ISTEA The United States Intermodal Surface Transportation Efficiency Act of 1991. This landmark federal government legislation reformed transportation planning in the US, by providing greater planning and programming flexibility for local governments and a greater emphasis on multimodal planning.

JWC Joint Working Committee. The US/Mexico JWC is a working committee that was formed under a Memorandum of Understanding signed between the United States and Mexico in 1994. Their purpose is to cooperate on land transportation planning and to establish methods and procedures to analyze current and future highway transportation infrastructure needs to facilitate efficient, safe and economical Crossborder transportation movements. The JWC is composed of the following members:

- Four representatives of the Department of Transportation;
- One representative from each of the four border states of the United States;
- One representative from the United States delegation to the United StatesMexico Bilateral Committee on Bridges and Border Crossings;
- Four representatives of the Secretariat de Comunicaciones y Transportes;
- One representative form the Mexican delegation to the Mexico-United States Bilateral Committee on Bridges and Border Crossings; and
- One representative from each of the six border states of Mexico.

One representative for the Department of Transportation and one representative form the Secretaria de Comunicaciones y Transportes will serve as co-chairs for the JWC. Other Federal and state transportation representatives may be included, as appropriate and as decided by the parties, in the Joint Working Committee.

km	Kilometers
LATTS	Latin America Trade and Transportation Study. A study conducted by Wilbur Smith Associates in conjunction with DRI/McGraw Hill, R.K. Johns, VZM Transystems, HNTB Corporation, WHM Transportation, "Latin America Trade and Transportation Study", March 2001. The purpose of the LATTS was to evaluate opportunities for trade with Latin America, and to determine transportation infrastructure investment needsto capitalize on the projected trade.
LOS	Level of Service. This is a qualitative measure describing operational conditions or congestion within a traffic stream, and the perception by motorists. There is a scale that ranges from free flow to gridlock. For most roads the LOS varies from A to E; for freeways and expressways LOS varies from A to F3. Listed below are the letters and their description:   A = Free Flow   $B=$ Free to stable flow, light to moderate volumes   C = Stable flow, moderate volumes, freedom to maneuver noticeably restricted   D = Approaches unstable flow, heavy volumes, very limited freedom to maneuver   E = Extremely unstable flow, maneuverability \& psychological comfort very poor   FO = Forced flow, heavy congestion, long queues form behind breakdown point, stop and go   F1 = Very heavy congestion, very long queues; 1-2 hour delay   F2 $=$ Extremely heavy congestion, longer queues, more numerous breakdown points, longer stop periods; 2-3 hour delay   F3 = Gridlock; 3+hours of delay
Mode	Refers to transport options. For individuals this would include airplanes for air travel, ships for water travel, and for land travel there are rail options [subway, light rail, etc.], automobiles, buses, bicycles or foot travel [pedestrian].
MPO	Metropolitan Planning Organization. A US regional transportation planning organization responsible for developing plans for large metropolitan areas.
NAFTA	North American Free Trade Agreement. Under NAFTA, all non-tariff barriers to agricultural trade between the United States and Mexico were eliminated. In addition, many tariffs were eliminated immediately, with others being phased out over periods of 5 to 15 years. Signatories to the document are Canada, Mexico and the United States and the agreement was implemented January 1, 1994.
NCPD	The United States National Corridor Planning and Development Program. This is a provision in US TEA-21 legislation that provide funds for the nation's most important transportation corridors.
NHS	National Highway System. The US NHS includes the Interstate Highway System as well as other roads important to the nation's economy, defense, and mobility. The NHS was developed by the Department of Transportation in cooperation with the states, local officials, and metropolitan planning organizations and includes about 160,000 miles $256,000 \mathrm{~km}$ of roadway.


PND	Plan Nacional de Desarrollo. [The Mexican National Development Plan]. This plan imposes laws for state and local governments, which require them to formulate their own distinct development plans (including transportation).
POE	Port of Entry. A POE is gateway or entry point to a country, where people and goods legally enter the country. There are POEs on land for those entering on bicycles, buses, passenger vehicles, trains, trucks, or walking. There are also POEs at airports for those flying into a country, and POEs at maritime ports for those entering on a seagoing vessel. This location is typically operated by the Federal Government of the country and inspections typically review papers for those entering [passports and visa] and bills of lading for articles being imported.
RTP	Regional Transportation Plan. This is a long-term multimodal transportation plan prepared by an MPO for its US region (typically 20-year outlook).
SAHOPE	The Mexican Secretaria de Asentamientos Humanos y Obras Publicas del Estado, Gobierno del Estado de Baja California [State Secretariat of Human Settlements and Public Works, State Government of Baja California]. It is responsible for developing the state development plan, which includes individual city plans.
SCT	Mexican Secretaria de Comunicaciones y Transportes [Secretariat of Communications and Transportation]. This Federal Agency is in charge of interstate highways and border crossings. Created in 1891, it is responsible for the formulation and implementation of policies, plans and programs aimed at the development of communications and transportation. Originally, SCT rendered its services and executed the public works directly through sub agencies within its organizational structure. At present, SCT has been converted into a regulatory and coordinating organization over all public and private entities involved in communications and all modes of transportation activities.
SDI	Safety Data Initiative. A program established by the US Department of Transportation whose goal is to improve the qual ity of transportation data such that the US travel risk factors can be identified, quantified and minimized.
SEDESOL	Secretaria de Desarollo Social - The Mexican Secretariat of Social Development is responsible for urban planning in border cities.
SHCP	Secretaría de Hacienda y Crédito Público (Ministry of Finance and Public Credit). This Ministry has budget authority to commit federal funds to projects.
SOV	Single Occupancy Vehicles. Vehicles on the road that only have one occupant.
SENTRI	Secure Electronic Network for Travelers' Rapid Inspection.
SPP	The Mexican Department of Budget and Planning. This agency is involved in transportation planning at the state and local level.

SRE The Mexican Secretaria de Relaciones Exteriores. This Federal Agency encourages participation in the planning, construction, and operation process of international bridges and border crossings.

STIP A US State Transportation Improvement Program. This is a short-term transportation program that includes all the programmed transportation improvements in a given US state.

STP A US State Transportation Plan. This is a long-term transportation plan adopted by the department of transportation of a US state.

TEA-21 The United States Transportation Equity Act for the Twenty-First Century. The 1998 reauthorization of the ISTEA legislation expires in 2003.

TIP A United States Transportation Improvement Program. This is a short-term program of improvements to an existing transportation system adopted by a US MPO.

TxDOT Texas Department of Transportation.
UAC SCT's Toll Road Unit
USDA United States Department of Agriculture. This federal agency is responsible for agricultural inspections at international ports of entry.

USDOT United States Department of Transportation. This is a cabinet level agency of the federal government responsible for overseeing federal transportation agencies and disbursing funds to lower levels of government.

WTTN Western Transportation Trade Network. The WTTN is a surface freight transportation concept specified by Wilbur Smith and Associates [consulting company] for 17 states in the western part of the United States. The WTTN takes a "big picture" view of the trade corridors within the western part of the US. The concepts were published in a report titled "Western Transportation Trade Network WTTN", 1999.

## BIBLIOGRAPHY

## BIBLIOGRAPHY

AA Roads, web site that lists and provides detail on all 44 high priority corridors identified by the US Congress between 1991 and 2002, http://www.aaroads.com/high-priority/.

Arizona Department of Transportation, "Five Year Transportation Facilities Construction Program, Fiscal years 2003-2007, Airports and Highways", 2002.

Arizona Department of Transportation, "Five-Year Highway Construction Program Priority Programming Process", 1997.

Arizona Department of Transportation, "Statewide Transportation Improvement Program, For Federal Fiscal Years 2002 to 2004", June 2002.

Arizona Department of Transportation, Lima and Associates, "Draft Programming Process Working Paper", September 2002.

Banks, James, "Approaches to Wait Time Monitoring at San Diego Area Border Crossings", San Diego State University, June 21, 2002.

Barton-Aschman Associates Inc. \& La Empresa S. de R.L., "Binational Border Transportation Planning and Programming Process", April 10, 1998.

Battelle and the Texas Transportation Institute, to the Office of Freight Management and Operations, Federal Highway Administration, "Final Report, Evaluation of Travel Time Methods to Support Mobility Performance Monitoring, FY 2001 Synthesis Report", April 2002.

California Department of Transportation, "California/Mexico Border Briefing", District 11 Planning Division, March 2002.

California Department of Transportation, IBI Group, "Los Angeles to San Diego Rail Corridor Improvement Technical Study", 2002.

California Transportation Commission. "Regional Transportation Plan Guidelines", December 1999. http://www.dot.ca.gov/hq/tpp/Offices/ORIP/TRP/Contents.html.

Cambridge Systematics, Inc., prepared for the US FHWA, "Performance Review of US DOT Innovative Finance Initiatives", Final Report, July 2002.

COBRO Summer Conference 2001, "San Diego-Tijuana Border Wait Times: Challenges and Opportunities."

Economic Data Resources, "Estimates of Commercial Motor Vehicles Using the Southwest Border Crossings", under the auspices of the International Association of Chiefs of Police for the US Department of Transportation, September 20, 2000.

Federal Aviation Administration, "Fiscal Year 2003, Budget in Brief", February 2002.

Ganster, Paul, "The U.S.-Mexican Border Environment: A Road Map to a Sustainable 2020", Southwest Center for Environmental Research, September 2002.

Gerber, James, "The Effects of a Depreciation of the Peso on CrossBorder Retail Sales in San Diego and Imperial Counties", for San Diego Dialogue, June 1999.

Gerber, James and Carrillo, Jorge, "Are Tijuana's and Mexicali's Maquiladora Plants Competitive?", briefing paper prepared for San Diego Dialogue’s Form Fronterizo program, July 2002.

Grupo Intersecretarial de Puertos y Servicios Fronterizos, Secretaria de Relaciones Exteriores de Mexico, "Guia para la presentacion y evaluacion de propuestas sobre puertos fronterizos", April 2001.

Hamilton, Rabinovitz and Alschuler, Inc., "The Impacts of Constrained Air Transportation Capacity on the San Diego Regional Economy (Draft)", September 2000.

Instituto Mexicano de Transporte. "Criterio para jerarquizar la conservación de carreteras con base en su importancia económica". Publicacion Tecnica No. 83, San Fandila, Qro., 1996.

Kuppam and Outwater, "Evaluating Freight Mobility on a Regionwide Basis Using EMME/2 - Freight Action Strategy [FAST] Truck Model for Puget Sound Region", 16th International EMME/2 User's Group Conference, Albuquerque, New Mexico, March 18-20.

Muñoz, V., Muñoz Alberich, V., Rojo, J, "The Border Crossings: Preliminary study", Tijuana Trabaja, December 2001.

Nathanson, Charles E., and Lampell, Julio, "Identifying Low Risk Crossers in Order to Enhance Security at Ports of Entry in the United States", prepared in partnership with the San Diego Regional Chamber of Commerce, San Diego Regional Economic Development Corporation, South Country Economic Development Council and Otay Mesa Chamber of Commerce, January 2002.

Nathanson, Charles E., and Lampell, Julio, "Solving Our Border Crossing Problem in and Era of Terrorism", prepared for San Diego Dialogue’s Forum Fronterizo, December 2001.

New Mexico State Highway and Transportation Department produced in cooperation with the Federal Highway Administration and the Federal Transit Administration, "Long Range Comprehensive Transportation Plan Update", January 1999.

Office of Freight Management and Operations, "Evaluation of Travel Time Methods to Support Mobility Performance Monitoring: Otay Mesa", for the Federal Highway Administration, Department of Transportation, April 2002.

Parsons, Brinckerhoff Quade and Douglas, San Diego Association of Governments, "High Occupancy Vehicle/ Managed Lane Study", July 2002.

Parsons Transportation Group in association with CIC-Research and El Colegio de la Frontera Norte [COLEF], "San Diego Region - Baja California Cross-Border Transportation Study", prepared for the San Diego Association of Governments, November 1, 2000.

Pick, Viswanathan, Tomita and Keshavan, funded by the California urban environmental and Research Center, "Border Demographic Impacts on The Urban Environment and Sustainable Development of Imperial County, California, and Mexicali Municipio, Mexico", Final Report, June 30, 2002.

San Diego Association of Governments, "North Coast Transportation Study", June 2000.
San Diego Association of Governments, "Routes 67/125 Corridor Study", June 2002.
San Diego Association of Governments, "State Route 94 Corridor: Tecate Port of Entry Trade and Truck Traffic", July 1997.

Secretaría de Comunicaciones y Transportes, "Metodología para el análisis beneficio/ costo de un nuevo puerto fronterizo, integrando los factores económicos, financieros, sociales y ambientales", Augusto 2000.

Secretaría de Comunicaciones y Transportes, "Modernización del sistema carretero troncal", October 1999. http://www.sct.gob.mx/acuota/index.htm\#contenido.

Secretaria de Comunicaciones y Transportes, "Sector Comunicaciones y Transportes, Programa de Trabajo 2002", 2001.

Secretaria de Comunicaciones y Transportes, "Sector Comunicaciones y Transportes, Programa de Trabajo 2001-2006", December 2001.

Shirk, David, "Resource Guide to Baja California for US Elected Officials, July 1999.
Shirk, David, "Cross-Border Engagement of the Global Economy in the San Diego-Tijuana Region", for the International Studies Annual Convention held in New Orleans, LA, March 24-27, 2002.

Silvers, Arthur L., "Limited Linkage, Demand Shifts and the Transboundary Transmission of Regional Growth", Regional Studies, Volume 34-3, pp. 239-251, 2000.

Silvers, Valencia, Gonzales, and Rubio, "Impacts of Transportation and Education Policy on Trade and Development in the Arizona-Sonora Region", The Arizona-Sonora Project, University of Arizona, December 1998.

Texas Department of Transportation, "Texas-Mexico nternational Bridges and Border Crossings, Existing and Proposed 2002", 2002.

Texas Department of Transportation, "Transportation Planning Policy Manual", September 2001.
Texas Department of Transportation, "2002 Unified Transportation Program."
US Department of Transportation, "A Guide to Metropolitan Transportation Planning Under ISTEA-How the Pieces Fit Together."

US Department of Transportation, "Intelligent Transportation Systems at International Borders, A Cross-Cutting Study", with the Federal Highway Administration and the Federal Transit Administration, April 2001.

US Department of Transportation, Transport Canada, Secretaría de Comunicaciones y Transportes, "North American Transportation in Figures", 1998.

US Department of Transportation, Bureau of Transportation Statistics, US International Trade and Freight transportation Trends, 2003.

US Department of Transportation, Federal Highway Administration, "HERS-ST v2.0, Highway Economic Requirements System State-Version, Users Guide", 2002.

US Department of Transportation, Federal Highway Administration, "Highway Performance Monitoring System, Field Manual", December 2000.

US Department of Transportation, Federal Highway Administration, "NHS Intermodal Freight Connectors, A Report to Congress", December 2000.

US Department of Transportation, Federal Highway Administration, Federal Transit Administration, "1999 Status of the Nation's Highways, Bridges and transit: Conditions and Performance, Report to Congress", May 2000.

US Department of Transportation, Federal Highway Administration, "Transportation Act for the 21st Century: A Summary", 1998. http://www.fhwa.dot.gov/tea21sumcov.htm.

US General Accounting Office Report to Congressional Requesters, "Marine Transportation: Federal Financing and a Framework for Infrastructure Investments", September 2002.

US General Accounting Office Report to Congressional Requesters, "North American Free Trade Agreement, Coordinated Operational Plan Needed to Ensure Mexican Trucks' Compliance with U.S. Standards", December 2001.

US General Accounting Office Report to Congressional Requesters, "U.S.-Mexico Border, Better Planning, Coordination Needed to Handle Growing Commercial Traffic", March 2000.

US General Accounting Office, Testimony Before the Committee on Finance and the Committee on Environmental Works U.S. Senate, "Transportation Infrastructure: Alternative Financing Mechanisms for Surface Transportation, September 25, 2002.

Werner, Frederick, US Department of Transportation center at Atlanta, "Draft Executive Summary of Financing Options for pilot Trans Border Projects", US/Mexico Joint Working Committee meeting, July 10, 2003.

White House Office of the Press Secretary, White House Details 22 Point U.S.-Mexico Border Partnership Action Plan", March 21, 2002.

Wilbur Smith Associates, "Nogales CyberPort Project, Alternative trade Flow Projections and CyberPort Concept Models", December 10, 2002.

Wilbur Smith Associates in conjunction with HNTB Corporation, Reebie Associates, Iteris, Olivarri \& Associates, Consensus Planning Group, TranSmart Technologies, Sharon Greene and WHM Transportation, "The National I-10 Freight Corridor Study", 2003.

Wilbur Smith Associates, Felsburg Holt \& Ullevig, "Western Transportation Trade Network - WTTN, Final Report - Phase II", 1999.

Wilbur Smith Associates in conjunction with DRI/McGraw Hill, R.K. Johns, VZM Transystems, HNTB Corporation, WHM Transportation, "Latin America Trade and Transportation Study", March 2001.


[^0]:    ${ }^{1}$ U.S. Bureau of the Census, Foreign Trade Division, 2003.
    ${ }^{2}$ U.S. Department of Transportation, Bureau of Transportation Statistics, Transborder Surface Freight Data, 2003
    ${ }^{3}$ Transportation infrastructure in the U.S. and Mexico was not historically built around binational trade and as such is not adequate for the reorientation of traffic around the border. For example, in the U.S., the main transportation arteries run east-west, following the pattern of national development. In Mexico, the principal federal highways run north-south and show a radial pattern around main population centers (Federal District, Guadalajara and Monterrey).

[^1]:    ${ }^{4}$ Secretaría de Comunicaciones y Transportes, Plan Nacional de Desarrollo 1995-2000 and Plan Nacional de Desarrollo 2001-2006.

[^2]:    ${ }^{5}$ Barton-Aschman Associates Inc. \& La Empresa S. de R.L., "Binational Border Transportation Planning and Programming Study," April 10, 1998.

[^3]:    ${ }^{6}$ For Arizona, California, and Texas, values were provided in 2001 constant dollars and are inflated to 2003 constant dollars using an inflation factor of 3.2 percent per year. This inflation factor was obtained from the BINS Technical Committee representative.

[^4]:    ${ }^{7}$ Barton-Aschman Associates, Inc., \& La Empresa, S. de R.L. (1998). Binational Border Transportation Planning and Programming Study. Washington, D.C.: U.S. Department of Transportation, Federal Highway Administration.
    ${ }^{8}$ There are likely other unintended, unforeseen impacts on other policy areas such as security, safety, environmental, and immigration. Although not addressed in this study on transportation infrastructure, these areas could be addressed in future studies.
    ${ }^{9}$ U.S. BTS web site at http://www.bts.gov/ntda/tbscd/reports.html.

[^5]:    ${ }^{10}$ Ibid.
    ${ }^{11}$ U.S. BTS web site at http://www.bts.gov/ntda/tbscd/reports.html.
    ${ }^{12}$ The BINS Technical Representative for New Mexico provided dollar projections for New Mexico trade for 2020. Projections for Arizona, California and Texas were derived by applying a growth rate to the 2000 data. The growth rate for each state was obtained from the Office of Freight Management, U.S. Department of Transportation, Federal Highway Administration.

[^6]:    ${ }^{13}$ Governor's Office of Planning and Research, The North American Free Trade Agreement: Implications for California, 1993.
    ${ }^{14}$ All U.S. population data was obtained from the BINS Technical representatives, U.S. State Transportation Departments. For Mexican states, the BINS representatives provided population data for Baja California while population estimates for the remaining states were obtained from the Mexican National Population Counsel (CONAPO). A municipio is equivalent to a county.
    ${ }^{15}$ The BINS Technical Representative for New Mexico provided 2020 projections for New Mexico truck crossings. Projections for Arizona, California and Texas were computed by multiplying the 2000 data by a growth rate for each state obtained from the Office of Freight Management, U.S. DOT, FHWA. In Mexico, the Baja California BINS Technical Representative provided a 2020 projection of truck crossings. All other

[^7]:    projections used a $3.0 \%$ compound annual growth rate recommended by the Mexican Secretariat of Communications and Transportation.
    ${ }^{16}$ The BINS Technical representative for Chihuahua, Coahuila, Nuevo León and Tamaulipas provided 2020 projections of AADT. For Baja California and Sonora, projections were derived by applying a 3.0 percent compound annual growth rate to the 2000 data, as recommended by SCT.
    ${ }^{17}$ Projections for LOS for 2020 were not provided by Sonora and Coahuila. For Baja California, projections were developed by applying a 3.0 percent compound annual growth rate to the 2000 data, as recommended by SCT.
    ${ }^{18}$ Highway capacity projections for 2020 were not provided by Sonora, Coahuila and Nuevo Leon. For Baja California, projections were created by applying a 3.0 percent compound annual growth rate to the 2000 data, as recommended by SCT.

[^8]:    ${ }^{19}$ The BINS Technical representatives for the four states provided 2020 projections of AADT.
    ${ }^{20}$ LOS data were provided only for California and New Mexico corridors, which represent five of 12 U.S. corridors identified by the BINS Technical Committee.
    ${ }^{21}$ The highway capacity data were provided only for two states (California and New Mexico BINS Technical representatives).

[^9]:    Source: BINSTechnical Committee.
    Note: $\quad \mathrm{AZ}=$ Arizona, $\mathrm{BC}=$ Baja California, $\mathrm{CA}=$ California, $\mathrm{CH}=$ Chihuahua, $\mathrm{CO}=$ Coahuila, NM = New Mexico, NL = Nuevo Leon, SO = Sonora, TA =Tamaulipas and TX =Texas.

[^10]:    ${ }^{22}$ To make this calculation, the costs for projects in M exico, in 2003 Mexican Pesos, are converted to U.S. dollars using an exchange rate of 1 USD $=10.5$ M exican Pesos. For projects in the U.S., project cost estimates for Arizona, California and Texas are all converted to 2003 constant dollars using adjustments provided by each state'sTechnical representative.

[^11]:    ${ }^{23}$ Werner, Frederick, FHWA, "U.S./M exico Joint Working Committee Innovative Finance Team FY 2004 Work Plan Products," July 10, 2003.

[^12]:    ${ }^{1}$ In some cases there will be less than 16 indicators. For example, some states do not have maritime ports so maritime data will not be included in the evaluation.

[^13]:    ${ }^{1}$ In some cases there will be fewer than 16 indicators. For example, some states do not have maritime ports so maritime data will not be included in the evaluation.

[^14]:    ${ }^{1}$ In some cases there will be fewer than 16 indicators. For example, some states do not have maritime ports so maritime data will not be included in the evaluation.

[^15]:    ${ }^{1}$ In some cases there will be fewer than 16 indicators. For example, some states do not have maritime ports so maritime data will not be included in the evaluation.

[^16]:    ${ }^{1}$ In some cases there will be fewer than 16 indicators. For example, some states do not have maritime ports so maritime data will not be included in the evaluation.

[^17]:    ${ }^{1}$ In some cases there will be fewer than 16 indicators. For example, some states do not have maritime ports so maritime data will not be included in the evaluation.

[^18]:    ${ }^{1}$ In some cases there will be fewer than 16 indicators. For example, some states do not have maritime ports so maritime data will not be included in the evaluation.

[^19]:    ${ }^{1}$ In some cases there will be fewer than 16 indicators. For example, some states do not have maritime ports so maritime data will not be included in the evaluation.

[^20]:    ${ }^{1}$ In some cases there will be fewer than 16 indicators. For example, some states do not have maritime ports so maritime data will not be included in the evaluation.

[^21]:    ${ }^{1}$ In some cases there will be fewer than 16 indicators. For example, some states do not have maritime ports so maritime data will not be included in the evaluation.

[^22]:    ${ }^{1}$ In some cases there will be fewer than 16 indicators. For example, some states do not have maritime ports so maritime data will not be included in the evaluation.

